TR4

FPGA Development Kit

User Manual

terasid ANDEBA.

Copyright © 2003-2012 Terasic Technologies Inc. All Rights Reserved.
CHAPTER 1 OVERVIEW 3
1.1 GENERAL DESCRIPTION 3
1.2 Key Features 4
1.3 Board Overview 5
1.4 Block Diagram 6
CHAPTER 2 USING THE TR4 BOARD. 11
2.1 Configuration Options 11
2.2 Setup Elements 18
2.3 Status Elements 19
2.4 General User Input/Output 20
2.5 High-Speed Mezzanine Cards 22
2.6 GPIO Expansion Headers 34
2.7 DDR3 SO-DIMM 38
2.8 Clock Circuitry 42
2.9 PCI Express 45
2.10 Flash Memory 49
2.11 SSRAM MEMORY 52
2.12 Temperature Sensor and Fan 53
2.13 POWER 54
2.14 SECURITY 54
CHAPTER 3 CONTROL PANEL 55
3.1 Control Panel Setup 55
3.2 Controlling the LEDs 59
3.3 Switches and Push-Buttons 60
3.4 Memory Controller 61
3.5 Temperature Monitor 64
3.6 PLL 65
3.7 HSMC 66
3.8 FAN 67
3.9 INFORMATION 68
CHAPTER 4 TR4 SYSTEM BUILDER. 70
4.1 Introduction 70
4.2 General Design Flow 70
4.3 Using TR4 System Builder 71
CHAPTER 5 EXAMPLES OF ADVANCED DEMONSTRATION.. 82
5.1 Breathing LEDs. 82
5.2 External Clock Generator 83
5.3 High Speed Mezzanine Card (HSMC) 89
5.4 DDR3 SDRAM (1GB) 91
5.5 DDR3 SDRAM (4GB). 94
CHAPTER 6 PCI EXPRESS REFERENCE DESIGN. 98
6.1 PCI Express System Infrastructure 98
6.2 FPGA PCI Express System Design 99
6.3 PC PCI Express System Design 103
6.4 PCIE Fundamental Communication 112
6.5 Image Processing Application 117
CHAPTER 7 APPENDIX A: HSMC PIN ASSIGNMENT 123
ADDITIONAL INFORMATION. 1

Chapter 1

Overview

This chapter provides an overview of the TR4 Development Board and details the components and features of the board.

1.1 General Description

The TR4 Development Board provides the ideal hardware platform for system designs that demand high-performance, serial connectivity, and advanced memory interfacing. Developed specifically to address the rapidly evolving requirements in many end markets for greater bandwidth, improved jitter performance, and lower power consumption, the TR4 is powered by the Stratix® IV GX device and supported by industry-standard peripherals, connectors and interfaces that offer a rich set of features that is suitable for a wide range of compute-intensive applications.

The advantages of the Stratix® IV GX FPGA platform with integrated transceivers have allowed the TR4 to be fully compliant with version 2.0 of the PCI Express standard. This will accelerate mainstream development of PCI Express-based applications and enable customers to deploy designs for a broad range of high-speed connectivity applications.

The TR4 is supported by multiple reference designs and six High-Speed Mezzanine Card (HSMC) connectors that allow scaling and customization with mezzanine daughter cards. For large-scale ASIC prototype development, multiple TR4s can be stacked together to create an easily-customizable multi-FPGA system.

1.2 Key Features

- Featured Device
- Altera Stratix® IV GX FPGA (EP4SGX230C2/EP4SGX530C2)
- Configuration and Set-up Elements
- Built-in USB Blaster circuit for programming
- Fast passive parallel (FPP) configuration via MAX II CPLD and FLASH
- Components and Interfaces
- Six HSMC connectors (two with transceiver support)
- Two 40-pin GPIO expansion headers (shares pins with HSMC Port C)
- Two external PCI Express 2.0 (x4 lane) connectors
- Memory
- DDR3 SO-DIMM socket (4GB Max)
- 64MB FLASH
- 2MB SSRAM
- General User Input/Output:
- Four LEDs
- Four push-buttons
- Four slide switches
- Clock system
- On-board 50 MHz oscillator
- Three on-board programmable PLL timing chips
- SMA connector pair for differential clock input
- SMA connector pair for differential clock output
- SMA connector for external clock input
- SMA connector for clock output
- Other
- Temperature sensor
- FPGA cooling fan

1.3 Board Overview

Figure 1-1 and Figure 1-2 show the top and bottom view of the TR4 board. It depicts the layout of the board and indicates the location of the connectors and key components. Users can refer to these figures for relative location when the connectors and key components are introduced in the following chapters.

Figure 1-1 TR4 Board View (Top)

Figure 1-2 TR4 Board View (Bottom)

1.4 Block Diagram

Figure 1-3 shows the block diagram of the TR4 board. To provide maximum flexibility for the users, all key components are connected with the Stratix IV GX FPGA device, allowing the users to implement any system design.

Figure 1-3 TR4 Block Diagram

Below is more detailed information regarding the blocks in Figure 1-3.

Stratix IV GX FPGA

- EP4SGX230C2
- 228,000 logic elements (LEs)
- $17,133 \mathrm{~K}$ total memory Kb
- 1,288 18x18-bit multipliers blocks
- 2 PCI Express hard IP blocks
- 744 user I/Os
- 8 phase locked loops (PLLs)
- EP4SGX530C2
- 531,200 logic elements (LEs)
- $27,376 \mathrm{~K}$ total memory Kb
- 1,024 18x18-bit multipliers blocks
- 4 PCI Express hard IP blocks
- 744 user I/Os
- 8 phase locked loops (PLLs)

Configuration Device and USB Blaster Circuit

- MAXII CPLD EPM2210 System Controller and Fast Passive Parallel (FPP) configuration
- On-board USB Blaster for use with the Quartus II Programmer
- Programmable PLL timing chip configured via MAX II CPLD
- Supports JTAG mode

Memory Devices

- 64 MB Flash ($32 \mathrm{M} \times 16$) with a 16 -bit data bus
- 2MB SSRAM (512K x 32)

DDR3 SO-DIMM Socket

- Up to 4GB capacity
- Maximum memory clock rate at 533 MHz
- Theoretical bandwidth up to 68 Gbps

LEDs

- 4 user-controllable LEDs
- Active-low

Push-buttons

- 4 user-defined inputs
- Active-low

Slide Switches

- 4 slide switches for user-defined inputs
- Logic low for DOWN position; Logic high for UP position

On-Board Clocking Circuitry

- 50 MHz oscillator
- SMA connector pair for differential clock inputs
- SMA connector pair for differential clock outputs
- SMA connector for external clock input
- SMA connector for clock output

Two PCI Express x4 Edge Connectors

- Support connection speed of Gen1 at $2.5 \mathrm{Gbps} / \mathrm{lane}$ to Gen2 at $5.0 \mathrm{Gbps} /$ lane
- Support downstream mode

Six High Speed Mezzanine Card (HSMC) Connectors

- Two HSMC ports include 16 pairs of CDR-based transceivers at data rates of up to 6.5 Gbps
- 52 true LVDS transmitter channels and 54 true LVDS receiver channels at data rate up to 1.6 Gbps ,
- 16 emulated LVDS transmitter channels and 14 emulated LVDS receiver channels at data rate up to 1.1 Gbps
- Configurable I/O standards - $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$

Two 40-pin GPIO Expansion Headers

- 72 FPGA I/O pins; 4 power and ground lines
- Shares pins with HSMC Port C
- Configurable I/O standards: $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$

Power

- Standalone DC 19V input

Other

- Temperature Sensor
- Cooling Fan

Chapter 2

Using the TR4 Board

This chapter gives instructions for using the TR4 board and its components.

It is strongly recommended that users read the TR4 Getting Started Guide.pdf before operating the TR4 board. The document is located in the Usermanual folder on the TR4 System CD. The contents of the document include the following:

- Introduction to the TR4 Development Board
- TR4 Development Kit Contents
- Key Features
- Before You Begin
- Software Installation
- Development Board Setup
- Programming the Stratix IV GX Device
- Programming through Flash

2.1 Configuration Options

- JTAG FPGA Programming with USB-Blaster

The USB-blaster is implemented on the TR4 board to provide a JTAG configuration through the on-board USB-to-JTAG configuration logic through the type-B USB connector, an FTDI USB 2.0 PHY device, and an Altera MAX II CPLD. For this programming mode, configuration data will be lost when the power is turned off.

To download a configuration bit stream into the Stratix IV GX FPGA, perform the following steps:

- Make sure that power is provided to the TR4 board.
- Open JP7 to bypass the JTAG interface of the HSMC if it won't be used.
- Connect the USB cable supplied directly to the USB Blaster port of the TR4 board (see Figure 2-1).
- The FPGA can now be programmed in the Quartus II Programmer by selecting a configuration bit stream file with the .sof filename extension.
- If users need to use the JTAG interface on HSMC, please refer to Section 2.2 for detailed HSMC JTAG switch settings.

Figure 2-1 JTAG Configuration Scheme

- JTAG FPGA Programming with External Blaster

The TR4 board supports JTAG programming over external blaster via J2. To use this interface, users need to solder a 2×5 pin connector (2.54 mm pitch) to J2. Make sure JP7 is open to bypass the JTAG interface of HSMC.

- Flash Programming

The TR4 development board contains a common Flash interface (CFI) memory to meet the demands for larger FPGA configurations. The Parallel Flash Loader (PFL) feature in MAX II devices provides an efficient method to program CFI flash memory devices through the JTAG interface and the logic to control configuration from the flash memory device to the Stratix IV GX FPGA. Figure 2-2 depicts the connection setup between the CFI flash memory, Max II CPLD, and Stratix IV GX.

Figure 2-2 Flash Programming Scheme

■ Programming Flash Memory using Batch File

The TR4 provides a batch file (program_Flash.bat) to limit the steps that are taken when users program the flash memory on the TR4.

Software Requirements:

- Quartus II 11.1 or later
- Nios II IDE 11.1 or later
- Program_Flash folder contents:
- Program_Flash.bat
- Program_Flash.pl
- Program_Flash.sh
- tr4_default_flash_loader.sof
- boot_loader_cfi.srec

Before you use the program_Flash.bat batch file to program the flash memory, make sure the TR4 is turned on and USB cable is connected to the USB blaster port (J4). In addition, place the .sof and .elf file you wish to program/convert in the Program_Flash directory.

Programming Flash Memory with .sof using Program_Flash.bat

1. Launch the program_Flash.bat batch file from the directory (\demonstrations\TR4_<Stratix device > TR4_Default_Flash_Loaderr\Program_Flash) of the TR4 system CD-ROM.
2. The Flash program tool shows the menu options.

Figure 2-3 Flash Program Tools
3. Select option 2.

Figure 2-4 Option 2
4. Enter the .sof file name to be programmed onto the flash memory.

Figure 2-5 Enter .sof Name to Program
5. The following lines will appear during Flash programming: 'Extracting Option bits SREC', 'Extracting FPGA Image SREC', and 'Deleting intermediate files'. If these lines don't appear on the windows command, programming on the flash memory is not successfully set up. Please make sure Quartus II 11.1 and Nios II 11.1 IDE or later is used.

```
CN Hios II EDS 11.1 [gcc3]
    Info: Processing started: Mon Dec 12 14:11:52 2011
Info: Command: quartus_cpf -c tr4_hw.pof tr4_hw.hexout
Info: Quartus II 32-bit Convert_programming_file was successful. © errors, Ø war
nings
    Info: Peak uirtual memory: 378 megabytes
    Info: Processing ended: Mon Dec 12 14:12:27 2011
    Info: Elapsed time: 00:00:35
    Info: Total GPU time <on all processors>: 00:00:34
Extracting Option bits SREC
Extracting FPGA Image SREC
Deleting intermediate files
Modify tr4_hw.map.flash file ok.
Load tr4_default_flash_loader file into FPGA, please wait ...
Info: ***********************************************************************************
Info: Running Quartus II 32-bit Programmer
    Info: Uersion 11.1 Build 173 11/01/2011 SJ Full Uersion
    Info: Copyright (C) 1991-2011 Altera Corporation. All rights reserved.
    Info: Your use of Altera Corporation's design tools, logic functions
    Info: and other software and tools, and its AMPP partner logic
    Info: functions, and any output files from any of the foregoing
    Info: <including device programming or simulation files>, and any
```

Figure 2-6 Loading .sof File
6. Erasing Flash.

Info: applicable agreement for further details.
Info: Processing started: Mon Dec 12 14:23:26 2011
Info: Gommand: quartus_pgm -c USB-Blaster[USB-0] -m jtag -o p;tr4_default_flash_ loader.sof
Info (213045): Using programming cable "USB-Blaster [USB-0]"
Info <213011): Using programming file tr4_default_flash_loader.sof with checksum Gx079EAT4D for deuice EP4SGX230KF40C1
Info (209060): Started Programmer operation at Mon Dec 12 14:23:35 2011
Info (209016): Configuring device index 1
Info (209017): Device 1 contains JTAG ID code Gx024090DD
Info <209007): Configuration succeeded -- 1 deuice〈s> configured
Info (209011): Successfully performed operation(s)
Info <209061): Ended Programmer operation at Mon Dec 12 14:23:56 2011
Info: Quartus II 32-bit Programmer was successful. D errors, 0 warnings
Info: Peak uirtual memory: 341 megabytes
Info: Processing ended: Mon Dec 12 14:23:56 2011
Info: Elapsed time: 00:00:30
Info: Total CPU time (on all processors): 00:00:06
Erase flash, please wait a few minutes .-.
Using cable "USB-Blaster [USB-0]", device 1, instance 0×00
Resetting and pausing target processor: 0K
Checksums took 6.4s
20100000 (7%): Erasing

Figure 2-7 Erasing Flash
7. Programming Flash.

```
Gi Hios II EDS 11.1 [gcc3]
                    - \square x
            Info: Processing started: Mon Dec 12 14:29:00 2011
Info: Command: quartus_pgm -c USB-Blaster[USB-0] -m jtag -o p;tr4_default_flash_
loader.sof
Info <213045): Using programming cable "USB-Blaster [USB-0]"
Info <213011>: Using programming file tr4_default_flash_loader.sof with checksum
0x079EA74D for device EP4SGX230KF40C1
Info <209060): Started Programmer operation at Mon Dec 12 14:29:06 2011
Info <209016>: Configuring device index 1
Info (209017): Device 1 contains JTAG ID code Gx024090DD
Info (209007): Gonfiguration succeeded -- 1 device(s) configured
Info <209011): Successfully performed operation<s>
Info (209061): Ended Programmer operation at Mon Dec 12 14:29:27 2011
Info: Quartus II 32-bit Programmer was successful. [ errors, 0 warnings
    Info: Peak virtual memory: }341\mathrm{ megabytes
    Info: Processing ended: Mon Dec 12 14:29:27 2011
    Info: Elapsed time: 00:00:27
    Info: Total CPU time (on all processors): 00:00:06
Program flash, please wait a few minutes ..-
Using cable "USB-Blaster [USB-Ø]". device 1, instance 0x00
Resetting and pausing target processor: 0k
Checksums took 2.3s
Erase not required
00180000 (12%): Programming
```

Figure 2-8 Programming Flash
8. Programming complete.

Figure 2-9 Programming Flash complete

2.2 Setup Elements

■ JTAG Control DIP Switch

The TR4 supports individual JTAG interfaces on each HSMC connector. This feature allows users to extend the JTAG chain to daughter cards or additional TR4s. Before using this interface, JP7 needs to be shorted to enable the JTAG interface on all the HSMC connectors.

The JTAG signals on each HSMC connector can be removed or included in the active JTAG chain via DIP switches. Table 2-1 lists the position of the DIP switches and their associated interfaces.

Note that if the JTAG interface on HSMC connector is enabled, make sure that the active JTAG chain must be a closed loop or the FPGA may not be detected. Section 2.5 will give an example on how to extend the JTAG interface to a daughter card. Also, a document named Using_Mult-TR4_system.pdf in TR4 system CD shows how to connect the JTAG interface on two stacked TR4 boards.

Table 2-1 JTAG Control

Components		Name	Description		Default
SW4	position 1	HSMCA_TOP	ON: HSMA TOP in-chain	OFF: Bypass HSMA TOP	OFF
	position 2	HSMCB_TOP	ON: HSMB TOP in-chain	OFF: Bypass HSMB TOP	OFF
	position 3	HSMCC_TOP	ON: HSMC TOP in-chain	OFF: Bypass HSMC TOP	OFF
	position 4	HSMCD_TOP	ON: HSMD TOP in-chain	OFF: Bypass HSMD TOP	OFF
SW5	position 1	HSMCA_BOT	ON: HSMA BOT in-chain	OFF: Bypass HSMA BOT	OFF
	position 2	HSMCB_BOT	ON: HSMB BOT in-chain	OFF: Bypass HSMB BOT	OFF
	position 3	HSMCC_BOT	ON: HSMC BOT in-chain	OFF: Bypass HSMC BOT	OFF
	position 4	HSMCD_BOT	ON: HSMD BOT in-chain	OFF: Bypass HSMD BOT	OFF
SW6	position 1	HSMCE_TOP	ON: HSME TOP in-chain	OFF: Bypass HSME TOP	OFF
	position 2	HSMCF_TOP	ON: HSMF TOP in-chain	OFF: Bypass HSMF TOP	OFF

2.3 Status Elements

The TR4 includes status LEDs. Please refer Table 2-2 for the status of the LED indicator.

Table 2-2 LED Indicators

Board Reference	LED name	Description
D13	HSMC Port E present	
D14	HSMC Port D present	
D15	HSMC Port A present	These LEDs are lit when HSMC Port A/B/C/D/E/F have a board or cable plugged-in such that pin 160 becomes grounded.
D20	HSMC Port C Present	
D27	HSMC Port B Present	
D28	HSMC Port F Present	
D16	USB Blaster Circuit	This LED is lit when the USB blaster circuit transmits or receives data.

D17	MAX＿LOAD	This LED is lit when the FPGA is being actively configured．
D18	MAX＿ERROR	This LED is lit when the MAX II CPLD EPM2210 System Controller fails to configure the FPGA．
D19	MAX＿CONF＿DONEn	This LED is lit when the FPGA is successfully configured．
D33	19V POWER	This LED is lit after the 19V adapter is plugged in
D1～D12	HSMC VCCIO＿LED	These LEDs indicate the I／O standard of the HSMC ports（see Table 2－12）

2．4 General User Input／Output

■ Push－buttons

The TR4 includes six push－buttons that allow you to interact with the Stratix IV GX FPGA．Each of these buttons is debounced using a Schmitt Trigger circuit，as indicated in Figure 2－10．Each push－button provides a high logic level or a low logic level when it is not pressed or pressed， respectively（active－low）．Table 2－3 lists the board references，signal names and their corresponding Stratix IV GX device pin numbers．

Schmitt Trigger
Debounced

Figure 2－10 Push－button Debouncing

Table 2－3 Push－button Pin Assignments，Schematic Signal Names，and Functions

Name	Locate	Description	I／O Standard	Stratix IV GX Pin Number
PB3	BUTTON3	Low when pushed	1.5 V	PIN＿P20
PB4	BUTTON2	（Active－low）	1.5 V	PIN＿A19
PB5	BUTTON1		$1.5 V$	PIN＿M19

PB6	BUTTON0	1.5V	PIN_L19

The MAX_RSTN push-button is used to reset the MAX II EPM2210 CPLD. The Config push-button can configure default code to FPGA. Table 2-4 lists the board references, signal names and their corresponding Stratix IV GX device pin numbers.

Table 2-4 Push-button Pin Assignments, Schematic Signal Names, and Functions

Name	Locate	Description	I/O Standard	EPM2210 Pin Number
PB1	MAX_RSTn	MAX II reset	3.3V-VTTL	PIN_M9
PB2	CONFIG	FPGA reconfig	3.3V-VTTL	PIN_D12

■ Slide Switches

There are four slide switches on the TR4 to provide additional FPGA input control. Each switch is connected directly to a pin of the Stratix IV GX FPGA. When a slide switch is in the DOWN position or the UP position, it provides a low logic level or a high logic level (VCCIO_HSMF or VCCIO_HSMA) to the FPGA, respectively. Table 2-5 lists the board references, signal names and their corresponding Stratix IV GX device pin numbers.

■ Table 2-5 Slide Switches Pin Assignments, Schematic Signal Names, and Functions

Name	Locate	Description	I/O Standard	Stratix IV GX Pin Number
SW0	SLIDE SW	Provides high	VCCIO_HSMF	PIN_AH18
SW1	SLIDE SW	logic level	VCCIO_HSMF	PIN_AH19
SW2	SLIDE SW		VCCIO_HSMA	PIN_D6
SW3	SLIDE SW	position	VCCIO_HSMA	PIN_C6

■ LEDs

The TR4 consists of 4 user-controllable LEDs to allow status and debugging signals to be driven to the LEDs from the designs loaded into the Stratix IV GX device. Each LED is driven directly by the Stratix IV GX FPGA. The LED is turned on or off when the associated pins are driven to a low or high logic level, respectively (active-low). A list of the pin names on the FPGA that are connected to the LEDs is given in Table 2-6.

Table 2-6 User LEDs Pin Assignments, Schematic Signal Names, and Functions

Name	Description	Description	I/O Standard	Stratix IV GX Pin Number
D27	LED0	LEDs turn on when	1.5 V	PIN_B19
D28	LED1	output is logic low	1.5 V	PIN_A18
D29	LED2	(Active-low)	1.5 V	PIN_D19
D30	LED3		1.5 V	PIN_C19

2.5 High-Speed Mezzanine Cards

The High Speed Mezzanine Card (HSMC) interface provides a mechanism to extend the peripheral-set of an FPGA host board by means of add-on daughter cards, which can address today's high speed signaling requirements as well as low-speed device interface support. The HSMC interfaces support JTAG, clock outputs and inputs, high-speed serial I/O (transceivers), and single-ended or differential signaling. The detailed specifications of the HSMC connectors are described below:

- 6 HSMC Connector Groups

There are ten HSMC connectors on the TR4 board are divided into 6 groups: HSMC A, HSMC B, HSMC C, HSMC D, HSMC E, and HSMC F. Each group has a male and female HSMC port on the top and bottom side of the TR4 board except HSMC E and HSMC F. In addition, both the male and female HSMC connector share the same I/O pins besides JTAG interface and high-speed serial I/O (transceivers).
Caution: DO NOT connect HSMC daughter cards to the backside HSMC (male) connectors. Doing so will permanently damage the on-board FPGA.

■ I/O Distribution

The HSMC connector on the TR4 includes a total of 172 pins, including 121 signal pins (120 signal pins +1 PSNTn pin), 39 power pins, and 12 ground pins. Figure $2-11$ shows the signal bank diagram of HSMC connector. Bank 1 also has dedicated JTAG, I2C bus, and clock signals. The main CMOS/LVDS interface signals, including LVDS/CMOS clocks, are found in banks 2 and 3. Both 12 V and 3.3 V power pins are also found in banks 2 and 3.

Figure 2-11 HSMC Signal Bank Diagram

Due to the limitation of FPGA bank I/O distribution and dedicated clock in/out pin numbers, there are some differences between individual HSMC connectors, listed below:

LVDS Interface

On the TR4 board, only HSMC ports A, B, C and D support LVDS. Each HSMC port provides 18(1) LVDS channel transceivers.

For LVDS transmitters, HSMC ports A and D support 18 true LVDS channels which can run up to 1.6 Gbps . The LVDS transmitter on HSMC Port B and C contain true and emulated LVDS channels.

The emulated LVDS channels use two single-ended output buffers and external resistors as shown in Figure 2-12. The associated I/O standard of these differential FPGA I/O pins in the Quartus II project should be set to LVDS_E_3R. Emulated LVDS I/O data rates can reach speeds up to 1.1 Gbps . The factory default setting for the Rs resistor will be 0 ohm and the Rp resistor will not be
assembled for single-ended I/O standard applications. For emulated LVDS transmitters, please solder 120 and 170 ohm resistors onto the Rs and Rp positions, respectively.

For the LVDS receivers, HSMC Port A/B/D support true LVDS receivers which can run at 1.6 Gbps . Unlike HSMC ports A/D, not all the LVDS receivers in HSMC ports B/C support On-Chip termination (OCT). To use these I/Os as LVDS receivers, the user needs to solder a 100 ohm resistor for input termination as show in Figure 2-12.

Table 2-7 gives the detailed numbers of true and emulated LVDS interfaces of each HSMC port. Also, it lists the numbers of LVDS receivers needed to assemble external input termination resistors on each HSMC ports.

Table 2-8 shows all the external input differential resistors for LVDS receivers on HSMC Port B and C. The factory default setting is not installed.

Finally, because HSMC Port C shares FPGA I/O pins with GPIO headers, so the LVDS performance can only support a data rate of up to 500 Mbps .
(1) Although the specifications of the HSMC connector defines signals D0~D3 as single-ended I/Os, D0 and D2 can be used as LVDS transmitters and D1 and D3 can be used as LVDS receivers on the TR4.

Figure 2-12 Emulated LVDS Resistor Network between FPGA and HSMC Port

Figure 2－13 External On－Board Termination between FPGA and HSMC Port

Table 2－7 LVDS Breakdown

	HSMA	HSMB	HSMC	HSMD	HSME	HSMF
True LVDS Transmitters	18	10	9	18	NA	NA
Emulated LVDS Transmitters	0	8	9	0	NA	NA
Supported with OCT	18	11	9	18	NA	NA
Needed External Input						
Termination Resistors．	0	7	9	0	NA	NA

Table 2－8 Distribution of the Differential Termination Resistors for HSMC Connector

HSMC Differential Net	Reference name of the differential termination resistor
HSMB＿RX＿p［11］	R333
HSMB＿RX＿p［12］	R318
HSMB＿RX＿p［13］	R312
HSMB＿RX＿p［14］	R311
HSMB＿RX＿p［15］	R303
HSMB＿RX＿p［16］	R315
HSMB＿D［1］	R332
HSMC＿RX＿p［0］	R314
HSMC＿RX＿p［1］	R316
HSMC＿RX＿p［2］	R330
HSMC＿RX＿p［3］	R341
HSMC＿RX＿p［4］	R329
HSMC＿RX＿p［5］	R328
HSMC＿RX＿p［6］	R309

HSMC_RX_p[7]	R306
HSMC_D[1]	R310

High-speed Serial I/O (transceiver) Interface

There are 8 CDR transceiver channels located on the top side of HSMC ports A and E, respectively. Each CDR transceiver can run up to 6.5 Gbps .

Clock Interface

Due to the limitation of the FPGA clock input pin numbers, not all the HSMC ports have same clock interface. Table 2-9 shows the FPGA clock input pin placement on each HSMC port.

In addition, since FPGA dedicated clock input pins (CLK[1,3,8,10]), or corner PLL clocks don't support On-Chip differential termination, please solder input termination resistors on R299 and R300, respectively, when using HSMC_CLKIN_p2/n2 and HSMA_CLKIN_p2/n2 as LVDS signals.

Table 2-9 HSMC clock interface distribution

HSMC Clock in/out pin	FPGA Clock Input Pin Placement					
name	HSMA	HSMB	HSMC	HSMD	HSME	HSMF
CLKIN0	I/O	I/O	I/O	CLK1n	I/O	CLK5p
CLKIN_p1	CLK9p	I/O	CLK2p	CLKOp	CLK11p	CLK6p
CLKIN_n1	CLK9n	I/O	CLK2n	CLK0n	CLK11n	CLK6n
CLKIN_p2	CLK8p	I/O	CLK3p	I/O	CLK10p	CLK4p
CLKIN_n2	CLK8n	I/O	CLK3n	I/O	CLK10n	CLK4n

I2C Interface

The I2C bus on the HSMC connectors is separated into two groups. HSMC Port A, B, and C share the same I2C interface. HSMC ports D, E, and F share the other I2C bus. Table 2-10 lists the detailed distribution.

Table 2-10 HSMC I2C Group

HSMC A/B/C I2C			
Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
HSMB_SCL	HSMC A/B/C I2C clock signal	2.5 V (1)	AE16
HSMB_SDA	HSMC A/B/C I2C data signal	2.5 V(1)	AF16
Schematic Signal	Hescription	I/O Standard	Stratix IV GX
Name	D/E/F I2C	Pin Number	
HSMD_SCL	HSMC D/E/F I2C clock signal	1.5V(1)	G21
HSMD_SDA	HSMC D/E/F I2C data signal	1.5V(1)	F21

(1) The I2C I/O on the TR4 HSMC connector is defined with 3.3V.

There is a level translator between FPGA and HSMC connector to translate FPGA 2.5V or 1.5V I/O to 3.3V. The signals above are also connected to the level translator. When these signals are used as general purpose I/O, the maximum data rate is 60Mbps.

I/O through the Level Translator

There is a pin named HSMD_OUT0 on HSMC Port D which is connected to an FPGA 1.5V I/O standard bank. To meet the I/O standard of adjustable specification, a level translator is used between the FPGA and HSMC Port D on this net. Thus, the maximum data rate of this pin is 60 Mbps due to the limitations of the level translator.

- HSMC Port C Shared Bus with GPIO

The HSMC Port C shares the same FPGA I/O pins with the GPIO expansion headers (JP9, JP10). Hence none of the combinations above are allowed to be used simultaneously.

- Power Supply

The TR4 board provides 12V DC and 3.3V DC power through HSMC ports. Table 2-11 indicates the maximum power consumption for all HSMC ports. Please note that this table shows the total max current limit for all six ports, not just for one.

Also, the 12 V DC and 3.3 V DC power supplies from the HSMC ports have fuses for protection. Users who don't need the power from the HSMC can remove these fuses to cut the power on connector.

CAUTION. Before powering on the TR4 board with a daughter card, please check to see if there is a short circuit between the power pins and FPGA I/O.

Table 2-11 Power Supply of the HSMC

Supplied Voltage	Max. Current Limit
$12 V$	2A
$3.3 V$	$3 A$

■ Adjustable I/O Standards

The FPGA I/O standards of the HSMC ports can be adjusted by configuring the header position. Each port can be individually adjusted to $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.0 V via jumpers on the top-right corner of TR4 board. Figure 2-14 depicts the position of the jumpers and their associated I/O standards. Users can use 2-pin jumpers to configure the I/O standard by choosing the associated positions on the header.

Finally, there are LEDs on the top-right corner of TR4 board to indicate the I/O standard of each HSMC port, as shown in Table 2-12. For example, LEDs D11 and D12 will be turned on and off, respectively, when the I/O Standard of HSMC Port A is set to 2.5 V .

Figure 2-14 HSMC I/O Configuration Header

Table 2-12 HSMC IO Standard Indicators

| | HSMA | | HSMB | | HSMC | | HSMD | | HSME | | HSMF | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D11 | D12 | D9 | D10 | D7 | D8 | D5 | D6 | D3 | D4 | D1 | D2 |
| $\mathbf{1 . 5 V}$ | OFF |
| $\mathbf{1 . 8 V}$ | OFF | ON |
| $2.5 V$ | ON | OFF |
| 3.0V | ON |

(1) Users who connect a daughter card onto the HSMC ports need to pay close attention to the I/O standard between TR4 HSMC connector pins and daughter card system. For example, if the I/O standard of HSMC pins on TR4 board is set to 1.8 V , a daughter card with 3.3 V or 2.5V I/O standard may not work properly on TR4 board due to I/O standard mismatch. When using custom or third-party HSMC daughter cards, make sure that all the pin locations are aligned to prevent shorts.

- Using THCB-HMF2 Adapter Card

The purpose of the HSMC Height Extension Male to Female card (THCB-HMF2) included in the TR4 kit package is to increase the height of the HSMC (Port C and D) connector to avoid any obstruction that might take place as a HSMC daughter card is connected. The THCB-HMF2 adapter card can be connected to either ports of the HSMC connector shown in Figure 2-15. There are numerous adapter cards that are supported by the TR4, such as loopback and differential
transmission adapters. For more detailed information about these adapter cards, please refer to HSMC_adapter_card.pdf which can be found in TR4 system CD.

Figure 2-15 Connection between HMF2 Adapter Card and HSMC

- JTAG Chain on HSMC

The JTAG chain on the HSMC can be activated through the three 4-position DIP switches (SW4, SW5, and SW6). Table 2-1 in section 2.2 gives a detailed description of the positions of the DIP switches and their associated interfaces. The HSMC connectors on the top side of TR4 board are controlled by SW4 and SW6. SW5 is used to control the HSMC JTAG chain on the bottom-side of the TR4. Only when multiple TR4s are stacked should the boards use this switch. A document titled Using_Multi-TR4_system.pdf in the TR4 system CD will give an example to demonstrate how to set SW5 to connect JTAG chains together for multiple TR4 boards. Finally, before using the JTAG interface on HSMC connector, please short JP7 in order to enable the HSMC JTAG interface.

The following will describe how to configure the JTAG interface of HSMC connector on the top-side of the TR4.

If there is no connection established on the HSMC connectors, the 4-position DIP switch (SW4 or SW6) should be set to 'Off', so the JTAG signals on the HSMC connectors are bypassed illustrated in Figure 2-16.

Figure 2-16 JTAG Chain for a Standalone TR4

If the HSMC-based daughter card connected to the HSMC connector uses the JTAG interface, the 4-position DIP switch (SW4 or SW6) should be set to 'On' according to the HSMC port used. In this case, from Figure 2-17 HSMC Port D is used so position 4 of the SW4 switch is set to 'On'. Similarly, if the JTAG interface isn't used on the HSMC-based daughter card, position 4 of SW4 is set to 'Off', thus bypassing the JTAG signals as shown in Figure 2-18.

Figure 2-17 JTAG Chain for a Daughter Card (JTAG is used) Connected to HSMC Port D of the TR4

Figure 2-18 JTAG chain for a Daughter Card (JTAG not used) Connected to HSMC Port D of the TR4

■ Multi-FPGA High-Capacity Platforms through HSMC

The TR4 offers a selection of two Stratix IV GX devices, EP4SGX230 and EPSGX530, which offer logic elements (LEs) up to 228,000 and 531,200 , respectively, to provide the flexibility for users to select a suitable device. In situations where users' design exceeds the capacity of the FPGA, the HSMC interface can be used to connect to other FPGA system boards creating a multi-FPGA scalable system. Users can stack two TR4s as shown in Figure 2-19. Another option is to use a Samtec high-speed cable to connect two TR4 boards (See Figure 2-20) to expand your system. For more information on how to use multi-TR4 systems, please refer to Using_Mult-TR4_system.pdf, which can be found on the TR4 System CD.

Figure 2-19 Two Stacked TR4 Boards

Figure 2-20 Two TR4 Boards Connected via HSMC Cable

2.6 GPIO Expansion Headers

The TR4 consists of two 40-pin expansion headers as shown in Figure 2-21. Each header has 36 I/O pins connected to the Stratix IV GX FPGA, with the other 4 pins providing 5 V (VCC5) DC, 3.3 V (VCC33) DC, and two GND pins.

GPIO 0 and GPIO 1 share pins with HSMC Port C. The I/O standards of the GPIO headers are the same as HSMC Port C, which can be configured between 1.5, 1.8, 2.5 and 3.0 V .

	$\begin{gathered} \text { JP10 } \\ \text { GPIO } 1 \end{gathered}$	
GPIOO_DO	(2)	- GPIO1_D1
GPIO1_D2	(3) 4	- GPIO1_D3
GPIO1_D4	(5) 6	- GPIO1_D5
GPIO1_D6	8	- GPIO1_D7
GPIO1_D8	(10	- GPIO1_D9
	11	- GND
GPIO1_D10 -	13 (14)	- GPIO1_D11
GPIO1_D112	15 (16	- GPIO1_D13
IO1_D14	78	- GPIO1_D15
GPIO1_D16	19 20	- GPIO1_D17
GPIO1_D18	21.22	- GPIO1_D19
GPIO1_D20	23 (24)	- GPIO1_D21
GPIO1_D22 -	25.26	- GPIO1_D23
GPIO1_D24 -	27 28	- GPIO1_D25
(29 30	- GND
P101_D26	31 32	- GPIO1_D27
GPIO1_D28 -	33 (34)	- GPIO1_D29
GPIO1_D30 -	35) 36	- GPIO1_D31
GPIO1_D32 -	37 38	- GPIO1_D33
GPIO1_D34 -	39 40	- GPIO1_D35

Figure 2-21 Pin Distribution of the GPIO Expansion Headers

Finally, Figure 2-22 shows the connections between the GPIO expansion headers and Stratix IV GX.

Figure 2-22 Connection between the GPIO Expansion Headers and Stratix IV GX

The information about mapping of the FPGA pin assignments to the GPIO0 and GPIO1 connectors, please refer Table 2-13 and Table 2-14.

Table 2-13 GPIO Expansion Header (JP9) Pin Assignments, Schematic Signal Names, and Functions

Board Reference (JP9)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
1	GPIOO_D0	GPIO Expansion 0 IO[0](Clock In)	Depends on I/O Standard of HSMC Port C	PIN_AF34
2	GPIOO_D1	GPIO Expansion 0 IO[1]		PIN_AG34
3	GPIOO_D2	GPIO Expansion 0 IO[2](Clock In)		PIN_AE35
4	GPIO0_D3	GPIO Expansion 0 IO[3]		PIN_AG35
5	GPIO0_D4	GPIO Expansion 0 IO[4]		PIN_AC31
6	GPIOO_D5	GPIO Expansion 0 IO[5]		PIN_AH32
7	GPIOO_D6	GPIO Expansion 0 IO[6]		PIN_AC32
8	GPIO0_D7	GPIO Expansion 0 IO[7]		PIN_AH33
9	GPIOO_D8	GPIO Expansion 0 IO[8]		PIN_AH34
10	GPIO0_D9	GPIO Expansion 0 IO[9]		PIN_AJ34
13	GPIOO_D10	GPIO Expansion 0 IO[10]		PIN_AH35
14	GPIOO_D11	GPIO Expansion 0 IO[11]		PIN_AJ35
15	GPIO0_D12	GPIO Expansion 0 IO[12]		PIN_AK34
16	GPIO0_D13	GPIO Expansion 0 IO[13]		PIN_AL34
17	GPIOO_D14	GPIO Expansion 0 IO[14]		PIN_AK35
18	GPIOO_D15	GPIO Expansion 0 IO[15]		PIN_AL35
19	GPIOO_D16	GPIO Expansion 0 IO[16]		PIN_AM34
20	GPIOO_D17	GPIO Expansion 0 IO[17]		PIN_AN34
21	GPIOO_D18	GPIO Expansion 0 IO[18]		PIN_AM35

22	GPIO0_D19	GPIO Expansion 0 IO[19]	Depends on I/O Standard of HSMC Port C	PIN_AN35
23	GPIO0_D20	GPIO Expansion 0 IO[20]		PIN_AJ32
24	GPIO0_D21	GPIO Expansion 0 IO[21]		PIN_AJ26
25	GPIO0_D22	GPIO Expansion 0 IO[22]		PIN_AK33
26	GPIO0_D23	GPIO Expansion 0 IO[23]		PIN_AK26
27	GPIO0_D24	GPIO Expansion 0 IO[24]		PIN_AF25
28	GPIO0_D25	GPIO Expansion 0 IO[25]		PIN_AV29
31	GPIO0_D26	GPIO Expansion 0 IO[26]		PIN_AG25
32	GPIO0_D27	GPIO Expansion 0 IO[27]		PIN_AW30
33	GPIO0_D28	GPIO Expansion 0 IO[28]		PIN_AV32
34	GPIO0_D29	GPIO Expansion 0 IO[29]		PIN_AT28
35	GPIO0_D30	GPIO Expansion 0 IO[30]		PIN_AW32
36	GPIO0_D31	GPIO Expansion 0 IO[31]		PIN_AU28
37	GPIO0_D32	GPIO Expansion 0 IO[32]		PIN_AV28
38	GPIO0_D33	GPIO Expansion 0 IO[33]		PIN_AP28
39	GPIO0_D34	GPIO Expansion 0 IO[34]		PIN_AW29
40	GPIO0_D35	GPIO Expansion 0 IO[35]		PIN_AR28

Table 2-14 GPIO Expansion Header (JP10) Pin Assignments, Schematic Signal Names, and Functions

Board Reference (JP10)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
1	GPIO1_D0	GPIO Expansion 1 IO[0]	Depends on I/O Standard of HSMC Port C	PIN_AB27
2	GPIO1_D1	GPIO Expansion 1 IO[1]		PIN_AE25
3	GPIO1_D2	GPIO Expansion 1 IO[2]		PIN_AB28
4	GPIO1_D3	GPIO Expansion 1 IO[3]		PIN_AD25
5	GPIO1_D4	GPIO Expansion 1 IO[4]		PIN_AP27
6	GPIO1_D5	GPIO Expansion 1 IO[5]		PIN_AU29
7	GPIO1_D6	GPIO Expansion 1 IO[6]		PIN_AN27
8	GPIO1_D7	GPIO Expansion 1 IO[7]		PIN_AT29
9	GPIO1_D8	GPIO Expansion 1 IO[8]		PIN_AL25
10	GPIO1_D9	GPIO Expansion 1 IO[9]		PIN_AW33
13	GPIO1_D10	GPIO Expansion 1 IO[10]		PIN_AP26
14	GPIO1_D11	GPIO Expansion 1 IO[11]		PIN_AW34
15	GPIO1_D12	GPIO Expansion 1 IO[12]		PIN_AW31
16	GPIO1_D13	GPIO Expansion 1 IO[13]		PIN_AH24
17	GPIO1_D14	GPIO Expansion 1 IO[14]		PIN_AV31
18	GPIO1_D15	GPIO Expansion 1 IO[15]		PIN_AG24
19	GPIO1_D16	GPIO Expansion 1 IO[16]		PIN_AL27
20	GPIO1_D17	GPIO Expansion 1 IO[17]		PIN_AW27
21	GPIO1_D18	GPIO Expansion 1 IO[18]		PIN_AH26
22	GPIO1_D19	GPIO Expansion 1 IO[19]		PIN_AW28
23	GPIO1_D20	GPIO Expansion 1 IO[20]		PIN_AK27

24	GPIO1_D21	GPIO Expansion 1 IO[21]	Depends on I/O Standard of HSMC Port C	PIN_AD30
25	GPIO1_D22	GPIO Expansion 1 IO[22]		PIN_AE24
26	GPIO1_D23	GPIO Expansion 1 IO[23]		PIN_AD31
27	GPIO1_D24	GPIO Expansion 1 IO[24]		PIN_AB30
28	GPIO1_D25	GPIO Expansion 1 IO[25]		PIN_AE30
31	GPIO1_D26	GPIO Expansion 1 IO[26]		PIN_AB31
32	GPIO1_D27	GPIO Expansion 1 IO[27]		PIN_AE31
33	GPIO1_D28	GPIO Expansion 1 IO[28]		PIN_AG31
34	GPIO1_D29	GPIO Expansion 1 IO[29]		PIN_AE28
35	GPIO1_D30	GPIO Expansion 1 IO[30]		PIN_AG32
36	GPIO1_D31	GPIO Expansion 1 IO[31]		PIN_AE29
37	GPIO1_D32	GPIO Expansion 1 IO[32]		PIN_AF29
38	GPIO1_D33	GPIO Expansion 1 IO[33]		PIN_AD28
39	GPIO1_D34	GPIO Expansion 1 IO[34]		PIN_AG30
40	GPIO1_D35	GPIO Expansion 1 IO[35]		PIN_AD29

2.7 DDR3 SO-DIMM

One DDR3 SO-DIMM socket is provided as a flexible and efficient form-factor volatile memory for user applications. The DDR3 SODIMM socket is wired to support a maximum capacity of 4GB with a 64-bit data bus. Using differential DQS signaling for the DDR3 SDRAM interfaces, it is capable of running at up to 533 MHz memory clock for a maximum theoretical bandwidth up to 68Gbps. Figure 2-23 shows the connections between the DDR3 SO-DIMM socket and Stratix IV GX device. The information about mapping of the FPGA pin assignments to the DDR3 SODIMM connectors, please refer to Table 2-15.

Table 2-15 DDR3 SODIMM Pin Assignments, Schematic Signal Names, and Functions

Schematic			Stratix IV GX
Signal Name	Description	I/O Standard	Pin Number
mem_addr [0]	DDR3 ADDRess [0]	SSTL-15 Class I	PIN_N23
mem_addr [1]	DDR3 ADDRess [1]	SSTL-15 Class I	PIN_C22
mem_addr [2]	DDR3 ADDRess [2]	SSTL-15 Class I	PIN_M22
mem_addr [3]	DDR3 ADDRess [3]	SSTL-15 Class I	PIN_D21
mem_addr [4]	DDR3 ADDRess [4]	SSTL-15 Class I	PIN_P24
mem_addr [5]	DDR3 ADDRess [5]	SSTL-15 Class I	PIN_A24
mem_addr [6]	DDR3 ADDRess [6]	SSTL-15 Class I	PIN_M21
mem_addr [7]	DDR3 ADDRess [7]	SSTL-15 Class I	PIN_D17
mem_addr [8]	DDR3 ADDRess [8]	SSTL-15 Class I	PIN_A25

mem_addr [9]	DDR3 ADDRess [9]	SSTL-15 Class I	PIN_N25
mem_addr [10]	DDR3 ADDRess [10]	SSTL-15 Class I	PIN_C24
mem_addr [11]	DDR3 ADDRess [11]	SSTL-15 Class I	PIN_N21
mem_addr [12]	DDR3 ADDRess [12]	SSTL-15 Class I	PIN_M25
mem_addr [13]	DDR3 ADDRess [13]	SSTL-15 Class I	PIN_K26
mem_addr [14]	DDR3 ADDRess [14]	SSTL-15 Class I	PIN_F16
mem_addr [15]	DDR3 ADDRess [15]	SSTL-15 Class I	PIN_R20
mem_ba[0]	DDR3 Bank ADDRess [0]	SSTL-15 Class I	PIN_B26
mem_ba[1]	DDR3 Bank ADDRess [1]	SSTL-15 Class I	PIN_A29
mem_ba[2]	DDR3 Bank ADDRess [2]	SSTL-15 Class I	PIN_R24
mem_cas_n	DDR3 Column ADDRess Strobe	SSTL-15 Class I	PIN_L26
mem_cke[0]	Clock Enable pin 0 for DDR3	SSTL-15 Class I	PIN_P25
mem_cke[1]	Clock Enable pin 1 for DDR3	SSTL-15 Class I	PIN_M16
mem_ck[0]	Clock p0 for DDR3	Differential 1.5-V SSTL Class I	PIN_K27
mem_ck[1]	Clock p1 for DDR3	Differential 1.5-V SSTL Class I	PIN_L25
mem_ck_n[0]	Clock n0 for DDR3	Differential 1.5-V SSTL Class I	PIN_J27
mem_ck_n[1]	Clock n1 for DDR3	Differential 1.5-V SSTL Class I	PIN_K28
mem_cs_n[0]	DDR3 Chip Select [0]	SSTL-15 Class I	PIN_D23
mem_cs_n[1]	DDR3 Chip Select [1]	SSTL-15 Class I	PIN_G28
mem_dm[0]	DDR3 Data Mask [0]	SSTL-15 Class I	PIN_G16
mem_dm[1]	DDR3 Data Mask [1]	SSTL-15 Class I	PIN_N16
mem_dm[2]	DDR3 Data Mask [2]	SSTL-15 Class I	PIN_P23
mem_dm[3]	DDR3 Data Mask [3]	SSTL-15 Class I	PIN_B29
mem_dm[4]	DDR3 Data Mask [4]	SSTL-15 Class I	PIN_H28
mem_dm[5]	DDR3 Data Mask [5]	SSTL-15 Class I	PIN_E17
mem_dm[6]	DDR3 Data Mask [6]	SSTL-15 Class I	PIN_C26
mem_dm[7]	DDR3 Data Mask [7]	SSTL-15 Class I	PIN_E23
mem_dq[0]	DDR3 Data [0]	SSTL-15 Class I	PIN_G15
mem_dq[1]	DDR3 Data [1]	SSTL-15 Class I	PIN_F15
mem_dq[2]	DDR3 Data [2]	SSTL-15 Class I	PIN_C16
mem_dq[3]	DDR3 Data [3]	SSTL-15 Class I	PIN_B16
mem_dq[4]	DDR3 Data [4]	SSTL-15 Class I	PIN_G17
mem_dq[5]	DDR3 Data [5]	SSTL-15 Class I	PIN_A16
mem_dq[6]	DDR3 Data [6]	SSTL-15 Class I	PIN_D16
mem_dq[7]	DDR3 Data [7]	SSTL-15 Class I	PIN_E16

mem_dq[8]	DDR3 Data [8]	SSTL-15 Class I	PIN_N17
mem_dq[9]	DDR3 Data [9]	SSTL-15 Class I	PIN_M17
mem_dq[10]	DDR3 Data [10]	SSTL-15 Class I	PIN_K17
mem_dq[11]	DDR3 Data [11]	SSTL-15 Class I	PIN_L16
mem_dq[12]	DDR3 Data [12]	SSTL-15 Class I	PIN_P16
mem_dq[13]	DDR3 Data [13]	SSTL-15 Class I	PIN_P17
mem_dq[14]	DDR3 Data [14]	SSTL-15 Class I	PIN_J17
mem_dq[15]	DDR3 Data [15]	SSTL-15 Class I	PIN_H17
mem_dq[16]	DDR3 Data [16]	SSTL-15 Class I	PIN_N22
mem_dq[17]	DDR3 Data [17]	SSTL-15 Class I	PIN_M23
mem_dq[18]	DDR3 Data [18]	SSTL-15 Class I	PIN_J25
mem_dq[19]	DDR3 Data [19]	SSTL-15 Class I	PIN_M24
mem_dq[20]	DDR3 Data [20]	SSTL-15 Class I	PIN_R22
mem_dq[21]	DDR3 Data [21]	SSTL-15 Class I	PIN_P22
mem_dq[22]	DDR3 Data [22]	SSTL-15 Class I	PIN_K24
mem_dq[23]	DDR3 Data [23]	SSTL-15 Class I	PIN_J24
mem_dq[24]	DDR3 Data [24]	SSTL-15 Class I	PIN_A27
mem_dq[25]	DDR3 Data [25]	SSTL-15 Class I	PIN_A28
mem_dq[26]	DDR3 Data [26]	SSTL-15 Class I	PIN_C29
mem_dq[27]	DDR3 Data [27]	SSTL-15 Class I	PIN_C30
mem_dq[28]	DDR3 Data [28]	SSTL-15 Class I	PIN_C27
mem_dq[29]	DDR3 Data [29]	SSTL-15 Class I	PIN_D27
mem_dq[30]	DDR3 Data [30]	SSTL-15 Class I	PIN_A31
mem_dq[31]	DDR3 Data [31]	SSTL-15 Class I	PIN_B31
mem_dq[32]	DDR3 Data [32]	SSTL-15 Class I	PIN_G27
mem_dq[33]	DDR3 Data [33]	SSTL-15 Class I	PIN_G29
mem_dq[34]	DDR3 Data [34]	SSTL-15 Class I	PIN_F28
mem_dq[35]	DDR3 Data [35]	SSTL-15 Class I	PIN_F27
mem_dq[36]	DDR3 Data [36]	SSTL-15 Class I	PIN_E28
mem_dq[37]	DDR3 Data [37]	SSTL-15 Class I	PIN_D28
mem_dq[38]	DDR3 Data [38]	SSTL-15 Class I	PIN_H26
mem_dq[39]	DDR3 Data [39]	SSTL-15 Class I	PIN_J26
mem_dq[40]	DDR3 Data [40]	SSTL-15 Class I	PIN_F19
mem_dq[41]	DDR3 Data [41]	SSTL-15 Class I	PIN_G19
mem_dq[42]	DDR3 Data [42]	SSTL-15 Class I	PIN_F20
mem_dq[43]	DDR3 Data [43]	SSTL-15 Class I	PIN_G20

mem_dq[44]	DDR3 Data [44]	SSTL-15 Class I	PIN_C17
mem_dq[45]	DDR3 Data [45]	SSTL-15 Class I	PIN_F17
mem_dq[46]	DDR3 Data [46]	SSTL-15 Class I	PIN_C18
mem_dq[47]	DDR3 Data [47]	SSTL-15 Class I	PIN_D18
mem_dq[48]	DDR3 Data [48]	SSTL-15 Class I	PIN_D25
mem_dq[49]	DDR3 Data [49]	SSTL-15 Class I	PIN_C25
mem_dq[50]	DDR3 Data [50]	SSTL-15 Class I	PIN_G24
mem_dq[51]	DDR3 Data [51]	SSTL-15 Class I	PIN_G25
mem_dq[52]	DDR3 Data [52]	SSTL-15 Class I	PIN_B25
mem_dq[53]	DDR3 Data [53]	SSTL-15 Class I	PIN_A26
mem_dq[54]	DDR3 Data [54]	SSTL-15 Class I	PIN_D26
mem_dq[55]	DDR3 Data [55]	SSTL-15 Class I	PIN_F24
mem_dq[56]	DDR3 Data [56]	SSTL-15 Class I	PIN_F23
mem_dq[57]	DDR3 Data [57]	SSTL-15 Class I	PIN_G23
mem_dq[58]	DDR3 Data [58]	SSTL-15 Class I	PIN_J22
mem_dq[59]	DDR3 Data [59]	SSTL-15 Class I	PIN_H22
mem_dq[60]	DDR3 Data [60]	SSTL-15 Class I	PIN_K22
mem_dq[61]	DDR3 Data [61]	SSTL-15 Class I	PIN_D22
mem_dq[62]	DDR3 Data [62]	SSTL-15 Class I	PIN_G22
mem_dq[63]	DDR3 Data [63]	SSTL-15 Class I	PIN_E22
mem_dqs[0]	DDR3 Data Strobe p[0]	Differential 1.5-V SSTL Class I	PIN_D15
mem_dqs[1]	DDR3 Data Strobe p[1]	Differential 1.5-V SSTL Class I	PIN_K16
mem_dqs[2]	DDR3 Data Strobe p[2]	Differential 1.5-V SSTL Class I	PIN_L23
mem_dqs[3]	DDR3 Data Strobe p[3]	Differential 1.5-V SSTL Class I	PIN_C28
mem_dqs[4]	DDR3 Data Strobe p[4]	Differential 1.5-V SSTL Class I	PIN_E29
mem_dqs[5]	DDR3 Data Strobe p[5]	Differential 1.5-V SSTL Class I	PIN_G18
mem_dqs[6]	DDR3 Data Strobe p[6]	Differential 1.5-V SSTL Class I	PIN_F25
mem_dqs[7]	DDR3 Data Strobe p[7]	Differential 1.5-V SSTL Class I	PIN_J23
mem_dqs_n[0]	DDR3 Data Strobe n[0]	Differential 1.5-V SSTL Class I	PIN_C15
mem_dqs_n[1]	DDR3 Data Strobe n[1]	Differential 1.5-V SSTL Class I	PIN_J16
mem_dqs_n[2]	DDR3 Data Strobe n[2]	Differential 1.5-V SSTL Class I	PIN_K23
mem_dqs_n[3]	DDR3 Data Strobe n[3]	Differential 1.5-V SSTL Class I	PIN_B28
mem_dqs_n[4]	DDR3 Data Strobe n[4]	Differential 1.5-V SSTL Class I	PIN_D29
mem_dqs_n[5]	DDR3 Data Strobe n[5]	Differential 1.5-V SSTL Class I	PIN_F18
mem_dqs_n[6]	DDR3 Data Strobe n[6]	Differential 1.5-V SSTL Class I	PIN_E25
mem_dqs_n[7]	DDR3 Data Strobe n[7]	Differential 1.5-V SSTL Class I	PIN_H23

mem_odt[0]	DDR3 On-die Termination 0	SSTL-15 Class I	PIN_F26
mem_odt[1]	DDR3 On-die termination 1	SSTL-15 Class I	PIN_G26
mem_ras_n	DDR3 Row ADDRess Strobe	SSTL-15 Class I	PIN_D24
mem_we_n	DDR3 Write Enable	SSTL-15 Class I	PIN_M27
mem_event_n	DDR3 Temperature Event	SSTL-15 Class I	PIN_R18
mem_reset_n	DDR3 Reset	SSTL-15 Class I	PIN_J18
mem_scl	DDR3 I2C Serial Clock	$\mathbf{1 . 5 V}$	PIN_H19
mem_sda	DDR3 I2C Serial Data Bus	$\mathbf{1 . 5 V}$	PIN_P18

Figure 2-23 Connection between DDR3 and Stratix IV GX FPGA

2.8 Clock Circuitry

- Stratix IV GX FPGA Clock Inputs and Outputs

The TR4 development board contains three types of clock inputs which include 26 global clock input pins, external PLL clock inputs and transceiver reference clock inputs. The clock input sources of the Stratix IV GX FPGA originate from on-board oscillators, a 50 MHz , driven through the clock buffers as well as other interfaces including HSMC, GPIO expansion headers(share pins with HSMC Port C), and SMA connectors. The overall clock distribution of the TR4 is presented in Figure 2-24.

Figure 2-24 Clock Connections of the TR4

Note:
(1) SMA_CLKOUT_p/N and some HSMC-A clock signals are connected to Bank 5C. If users use

SMA_CLKOUT_p/n ,please set HSMC-A I/O standard to 2.5 V .
(2) SMA_GXBCLK_p/n input HSMC-E and PCIE0's Transceiver Bank GXBL.
(3) PGM_GXBCLK_p1/n1input HSMC-A and PCIE1's Transceiver Bank GXBR.
(4) HSMD_OUT0 interface through a level shift, so the maximum speed is 60 Mbps .

The Stratix IV GX FPGA consists of 8 dedicated clock input pins and from those pins, 3 dedicated differential clock input listed in Table 2-19. In addition, there are a total of 8 PLLs available for the Stratix IV GX device.

Table 2-19 Dedicated Clock Input Pins

Dedicated Clock Input Pins
OSC_50_BANK1
HSMD_CLKIN0
HSMC_CLKIN_p2
HSMC_CLKIN_n2
HSMA_CLKIN_p2
HSMA_CLKIN_n2
HSME_CLKIN_p2
HSME_CLKIN_n2

The dedicated clock input pins from the clock input multiplexer allow users to use any of these clocks as a source clock to drive the Stratix IV PLL circuit through the GCLK and RCLK networks. Alternatively, PLLs through the GCLK and RCLK networks or from dedicated connections on adjacent top/bottom and left/right PLLs can also drive the PLL circuit. The clock outputs of the Stratix IV GX FPGA are derived from various interfaces, notably the HSMC and the SMA connectors.

- Stratix IV GX FPGA Transceiver Clock Inputs

The transceiver reference clock inputs for the serial protocols supported by the Stratix IV GX FPGA transceiver channels include the PCI Express (PIPE) and the SMA connectors.

The TR4 uses three programmable low-jitter clock generators with default clock output of 100 MHz and an I/O standard of LVDS that is non-configurable. The clock generators are programmed via Max II CPLD to generate the necessary clocks for the Stratix IV GX transceiver protocols and interfaces such as HSMC. The PCI Express (PIPE) transceiver reference clock is generated from the PCIe connector.

The clock frequency for the programmable clock generators can be specified by using the TR4 control panel, TR4 system builder, or the external clock generator demo provided.

The associated pin assignments for clock buffer and SMA connectors to FPGA I/O pins are shown in Table 2-20.

Table 2-20 Clock Inputs/Outputs Pin Assignments, Schematic Signal Names, and Functions

Board Reference	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
U49-4	OSC_50_BANK1	Dedicated 50MHz clock input for bank 1C	2.5-V	AB34
U21-4	OSC_50_BANK3	50MHz clock input for bank 3C	2.5-V	AW22
U20-4	OSC_50_BANK4	50 MHz clock input for bank 4C	2.5-V	AV19
U12-4	OSC_50_BANK7	50 MHz clock input for bank 7C	1.5-V	A21
U13-4	OSC_50_BANK8	50MHz clock input for bank 8C	1.5-V	B23
U11-6	HSMA_REFCLK_p	HSMC-A transceiver reference clock input	LVDS	AA2
U11-5	HSMA_REFCLK_n	HSMC-A transceiver reference clock input	LVDS	AA1
U5-6	HSME_REFCLK_p	HSMC-E transceiver reference clock input	LVDS	AA38
U5-5	HSME_REFCLK_n	HSMC-E transceiver reference clock input	LVDS	AA39
J20	SMA_CLKOUT_p	SMA differential clock output	2.5V or LVDS	AC11
J19	SMA_CLKOUT_n	SMA differential clock output	2.5V or LVDS	AC10
J16	SMA_GXBCLK_p	SMA transceiver reference clock input	LVDS	J38
J17	SMA_GXBCLK_n	SMA transceiver reference clock input	LVDS	J39
J21	SMA_CLKIN	SMA clock input	2.5V	AW19

2.9 PCI Express

The TR4 development board features two PCIe Express downstream interfaces (x4 lane) which are designed to interface with a PC motherboard x4 slot via PCIe cable and PCIe adapter card. Utilizing
built-in transceivers on a Stratix IV GX device, it is able to provide a fully integrated PCI Express-compliant solution for multi-lane (x4) applications. With the PCI Express hard IP block incorporated in the Stratix IV GX device, it will allow users to implement simple and fast protocol, as well as saving logic resources for logic application.

The PCI Express interface supports complete PCI Express Gen1 at $2.5 \mathrm{Gbps} / \mathrm{lane}$ and Gen2 at $5.0 \mathrm{Gbps} /$ lane protocol stack solution compliant to PCI Express base specification 2.0 that includes PHY-MAC, Data Link, and transaction layer circuitry embedded in PCI Express hard IP blocks.

To use PCIe interface, two external associated devices will be needed to establish link with PC. First, a PCIe half-height add-in host card with a PCIe x4 cable connector (See Figure 2-25) will be used to plug into the PCIe slot on a mother board. Then, a PCIe x4 cable (See Figure 2-26) will be used to connect TR4 board and PCIe add-in card as shown in Figure 2-27. These two associated devices are not included in TR4 kit. To purchase the PCIe add-in host card as well as the external cable, please contact Terasic sales team (sales@terasic.com).

Finally, section 6.3 and 6.4 demonstrate two examples on how to use the PCIe interface of TR4 board with a PC. Table 2-16 and Table 2-17 summarize the PCI Express pin assignments of the signal names relative to the Stratix IV GX FPGA.

Figure 2-25 PCle Adapter Card for Host Computer

Figure 2-26 PCle External Cable

Figure 2-27 PCle Link Setup between TR4 and PC

Figure 2-28 PCI Express Pin Connection
Table 2-16 PCIe0 Pin Assignments, Schematic Signal Names, and Functions

PCleO 4-Lane Downstream			
Name	Description	I/O Standard	Stratix IV GX Pin Number
PCIE0_REFCLK_p	PCleO reference clock	HCSL	AN38
PCIE0_PREST_n	PCle0 present	Depends on HSMC Port A I/O standard	F8
PCIE0_WAKE_n	PCle0 wake	Depends on HSMC Port A I/O standard	AE10
PCIE0_TX_p[0]	PCle0 data lane	1.4-V PCML	AT36
PCIE0_RX_p[0]		1.4-V PCML	AU38
PCIE0_TX_p[1]		1.4-V PCML	AP36
PCIE0_RX_p[1]		1.4-V PCML	AR38
PCIE0_TX_p[2]		1.4-V PCML	AH36
PCIE0_RX_p[2]		1.4-V PCML	AJ38
PCIE0_TX_p[3]		1.4-V PCML	AF36
PCIE0_RX_p[3]		1.4-V PCML	AG38

Table 2-17 PCIe1 Express Pin Assignments, Schematic Signal Names, and Functions

PCle1 4-Lane Downstream			
Name	Description	I/OStandard	Stratix IV GX Pin Numbeı
PCIE1_REFCLK_p	PCle1 reference clock	HCSL	AN2
PCIE1_PREST_n	PCle1 present	Depends on HSMC Port A I/O standard	G8
PCIE1_WAKE_n	PCle1 wake	Depends on HSMC Port A I/O standard	AE11
PCIE1_TX_p[0]	PCle1 data lane	1.4-V PCML	AT4
PCIE1_RX_p[0]		1.4-V PCML	AU2
PCIE1_TX_p[1]		1.4-V PCML	AP4
PCIE1_RX_p[1]		1.4-V PCML	AR2
PCIE1_TX_p[2]		1.4-V PCML	AH4
PCIE1_RX_p[2]		1.4-V PCML	AJ2
PCIE1_TX_p[3]		1.4-V PCML	AF4
PCIE1_RX_p[3]		input	AG2

2.10 Flash Memory

The TR4 development board features a 64MB Intel CFI-compliant NOR-type flash memory device which is part of the shared FMS Bus consisting of flash memory, SSRAM, and the Max II CPLD (EPM2210) System Controller. The single synchronous flash memory with 16-bit data bus supports 4 -word, 8 -word 16 -word, and continuous-word burst mode provides non-volatile storage that can be used for configuration as well as software storage. The memory interface can sustain output synchronous-burst read operations at 40 MHz with zero wait states. The device defaults to asynchronous page-mode read when power-up is initiated or returned from reset.

This device is also used to store configuration files for the Stratix IV GX FPGA where the MAX II CPLD (EPM2210) can access flash for FPP configuration of the FPGA using the PFL Megafunction. Table 2-18 lists the flash pin assignments, signal names, and functions.

Figure 2-29 Connection between Flash, SSRAM, MAXII EPM2210 and the Stratix IV GX FPGA

Table 2-18 Flash Memory Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
FSM_A1	Address bus	3.0-V PCI-X	PIN_L31
FSM_A2	Address bus	$3.0-\mathrm{V}$ PCI-X	PIN_F34
FSM_A3	Address bus	$3.0-\mathrm{V}$ PCI-X	PIN_D35
FSM_A4	Address bus	$3.0-\mathrm{V}$ PCI-X	PIN_D34
FSM_A5	Address bus	$3.0-\mathrm{V}$ PCI-X	PIN_E34
FSM_A6	Address bus	$3.0-\mathrm{V}$ PCI-X	PIN_C35
FSM_A7	Address bus	3.0-V PCI-X	PIN_C34
FSM_A8	Address bus	3.0-V PCI-X	PIN_F33

FSM_A9	Address bus	3.0-V PCI-X	PIN_G35
FSM_A10	Address bus	3.0-V PCI-X	PIN_H35
FSM_A11	Address bus	3.0-V PCI-X	PIN_J32
FSM_A12	Address bus	3.0-V PCI-X	PIN_J33
FSM_A13	Address bus	3.0-V PCI-X	PIN_K32
FSM_A14	Address bus	3.0-V PCI-X	PIN_K31
FSM_A15	Address bus	3.0-V PCI-X	PIN_AH17
FSM_A16	Address bus	3.0-V PCI-X	PIN_AH16
FSM_A17	Address bus	3.0-V PCI-X	PIN_AE17
FSM_A18	Address bus	3.0-V PCI-X	PIN_AG16
FSM_A19	Address bus	3.0-V PCI-X	PIN_H32
FSM_A20	Address bus	3.0-V PCI-X	PIN_H34
FSM_A21	Address bus	3.0-V PCI-X	PIN_G33
FSM_A22	Address bus	3.0-V PCI-X	PIN_F35
FSM_A23	Address bus	3.0-V PCI-X	PIN_N31
FSM_A24	Address bus	3.0-V PCI-X	PIN_M31
FSM_A25	Address bus	3.0-V PCI-X	PIN_M30
FSM_D0	Data bus	3.0-V PCI-X	PIN_B32
FSM_D1	Data bus	3.0-V PCI-X	PIN_C32
FSM_D2	Data bus	3.0-V PCI-X	PIN_C31
FSM_D3	Data bus	3.0-V PCI-X	PIN_F32
FSM_D4	Data bus	3.0-V PCI-X	PIN_J30
FSM_D5	Data bus	3.0-V PCI-X	PIN_K29
FSM_D6	Data bus	3.0-V PCI-X	PIN_K30
FSM_D7	Data bus	3.0-V PCI-X	PIN_L29
FSM_D8	Data bus	3.0-V PCI-X	PIN_M29
FSM_D9	Data bus	3.0-V PCI-X	PIN_N29
FSM_D10	Data bus	3.0-V PCI-X	PIN_P29
FSM_D11	Data bus	3.0-V PCI-X	PIN_T27
FSM_D12	Data bus	3.0-V PCI-X	PIN_AM17
FSM_D13	Data bus	3.0-V PCI-X	PIN_AL17
FSM_D14	Data bus	3.0-V PCI-X	PIN_AK16
FSM_D15	Data bus	3.0-V PCI-X	PIN_AJ16
FLASH_CLK	Clock	3.0-V PCI-X	PIN_AU15
FLASH_RESET_n	Reset	3.0-V PCI-X	PIN_AV16
FLASH_CE_n	Chip Enable	3.0-V PCI-X	PIN_AP16
FSM_OE_n	Output Enable	3.0-V PCI-X	PIN_AT16
FSM_WE_n	Write Enable	3.0-V PCI-X	PIN_AL16
FLASH_ADV_n	Address Valid	3.0-V PCI-X	PIN_AT15
FLASH_RDY_BSY_n	Ready	1.5 V	PIN_A23
FLASH_WP_n	Write Protect	1.5 V	PIN_A20

2.11 SSRAM Memory

The Synchronous Static Random Access Memory (SSRAM) device featured on the TR4 development board is part of the shared Flash-SSRAM-Max II (FSM) bus, which connects to Flash memory, SSRAM, and the MAX II CPLD (EEPM2210) System Controller. This device is a 2 MB synchronously pipelined and high-speed, low-power synchronous static RAM designed to provide burstable, high-performance memory for communication and networking applications. Table 2-19 lists the SSRAM pin assignments and signal names relative to the Stratix IV GX device in terms of I/O setting.

Table 2-19 SSRAM Memory Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
FSM_A2	Address bus A0	3.0-V PCI-X	PIN_F34
FSM_A3	Address bus A1	$3.0-\mathrm{V}$ PCI-X	PIN_D35
FSM_A4	Address bus A2	$3.0-\mathrm{V}$ PCI-X	PIN_D34
FSM_A5	Address bus A3	3.0-V PCI-X	PIN_E34
FSM_A6	Address bus A4	$3.0-\mathrm{V}$ PCI-X	PIN_C35
FSM_A7	Address bus A5	3.0-V PCI-X	PIN_C34
FSM_A8	Address bus A6	3.0-V PCI-X	PIN_F33
FSM_A9	Address bus A7	3.0-V PCI-X	PIN_G35
FSM_A10	Address bus A8	$3.0-\mathrm{V} \mathrm{PCI}-X$	PIN_H35
FSM_A11	Address bus A9	3.0-V PCI-X	PIN_J32
FSM_A12	Address bus A10	3.0-V PCI-X	PIN_J33
FSM_A13	Address bus A11	3.0-V PCI-X	PIN_K32
FSM_A14	Address bus A12	3.0-V PCI-X	PIN_K31
FSM_A15	Address bus A13	3.0-V PCI-X	PIN_AH17
FSM_A16	Address bus A14	3.0-V PCI-X	PIN_AH16
FSM_A17	Address bus A15	$3.0-\mathrm{V}$ PCI-X	PIN_AE17
FSM_A18	Address bus A16	3.0-V PCI-X	PIN_AG16
FSM_A19	Address bus A17	3.0-V PCI-X	PIN_H32
FSM_A20	Address bus A18	3.0-V PCI-X	PIN_H34
FSM_A21	Address bus A19	3.0-V PCI-X	PIN_G33
FSM_A22	Address bus A20	3.0-V PCI-X	PIN_F35
FSM_D0	Data bus	$3.0-\mathrm{V} \mathrm{PCI}-\mathrm{X}$	PIN_B32
FSM_D1	Data bus	$3.0-\mathrm{V} \mathrm{PCI-X}$	PIN_C32
FSM_D2	Data bus	3.0-V PCI-X	PIN_C31
FSM_D3	Data bus	$3.0-\mathrm{V} \mathrm{PCI}-X$	PIN_F32
FSM_D4	Data bus	$3.0-\mathrm{V} \mathrm{PCI}-X$	PIN_J30
FSM_D5	Data bus	$3.0-\mathrm{V}$ PCI-X	PIN_K29
FSM_D6	Data bus	$3.0-\mathrm{V} \mathrm{PCI}-\mathrm{X}$	PIN_K30
FSM_D7	Data bus	$3.0-\mathrm{V} \mathrm{PCI}-X$	PIN_L29

FSM_D8	Data bus	3.0-V PCI-X	PIN_M29
FSM_D9	Data bus	3.0-V PCI-X	PIN_N29
FSM_D10	Data bus	3.0-V PCI-X	PIN_P29
FSM_D11	Data bus	3.0-V PCI-X	PIN_T27
FSM_D12	Data bus	3.0-V PCI-X	PIN_AM17
FSM_D13	Data bus	3.0-V PCI-X	PIN_AL17
FSM_D14	Data bus	3.0-V PCI-X	PIN_AK16
FSM_D15	Data bus	3.0-V PCI-X	PIN_AJ16
FSM_D16	Data bus	3.0-V PCI-X	PIN_AK17
FSM_D17	Data bus	3.0-V PCI-X	PIN_T28
FSM_D18	Data bus	3.0-V PCI-X	PIN_R27
FSM_D19	Data bus	3.0-V PCI-X	PIN_R28
FSM_D20	Data bus	3.0-V PCI-X	PIN_R29
FSM_D21	Data bus	3.0-V PCI-X	PIN_N30
FSM_D22	Data bus	3.0-V PCI-X	PIN_N28
FSM_D23	Data bus	3.0-V PCI-X	PIN_M28
FSM_D24	Data bus	3.0-V PCI-X	PIN_H31
FSM_D25	Data bus	3.0-V PCI-X	PIN_G31
FSM_D26	Data bus	3.0-V PCI-X	PIN_D31
FSM_D27	Data bus	3.0-V PCI-X	PIN_E31
FSM_D28	Data bus	3.0-V PCI-X	PIN_F31
FSM_D29	Data bus	3.0-V PCI-X	PIN_E32
FSM_D30	Data bus	3.0-V PCI-X	PIN_C33
FSM_D31	Data bus	3.0-V PCI-X	PIN_D33
FSM_OE_n(OE_n)	Output Enable	3.0-V PCI-X	PIN_AT16
FSM_WE_n(BWE_n)	Byte Write Enable	3.0-V PCI-X	PIN_AL16
SSRAM_ADSC_n	Address Status Controller	3.0-V PCI-X	PIN_AP17
SSRAM_ADSP_n	Address Status Processor	3.0-V PCI-X	PIN_AR17
SSRAM_ADV_n	Synchronous Burst Address Advance	3.0-V PCI-X	PIN_AW16
SSRAM_BE_n0	Synchronous Byte Write Controls	3.0-V PCI-X	PIN_AN16
SSRAM_BE_n1	Synchronous Byte Write Controls	3.0-V PCI-X	PIN_AN17
SSRAM_BE_n2	Synchronous Byte Write Controls	3.0-V PCI-X	PIN_AR16
SSRAM_BE_n3	Synchronous Byte Write Controls	3.0-V PCI-X	PIN_AU16
SSRAM_CE1_n	Synchronous Chip Enable	3.0-V PCI-X	PIN_AF17
SSRAM_CLK	Synchronous Clock	3.0-V PCI-X	PIN_AG17
SSRAM_MODE	Burst Sequence Selection	-	-
SSRAM_GW_n	Synchronous Global Write Enable	-	-
SRAM_CE2	Synchronous Chip Enable	-	-
SSRAM_CE3_n	Synchronous Chip Enable	-	-
SSRAM_ZZ	Power Sleep Mode	-	-

2.12 Temperature Sensor and Fan

The TR4 is equipped with a temperature sensor MAX1619, which provides temperature sensing and
over-temperature alerts. These functions are accomplished by connecting the temperature sensor to the internal temperature sensing diode of the Stratix IV GX device. The temperature status and alarm threshold registers of the temperature sensor can be programmed by a two-wire SMBus, which is connected to the Stratix IV GX FPGA. The 7-bit power-on-reset (POR) slave address for this sensor is ' 0011000 b '.

An optional 3-pin +12 V header for fan control located on J10 of the TR4 board is intended to reduce the temperature of the FPGA. When the temperature of the FPGA device is over the threshold value set by the users, the fan will turn on automatically. The pin assignments for the associated interface are listed in Table 2-20.

Table 2-20 Temperature Sensor Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
TEMP_SMCLK	SMBus clock	$2.5-$ V	PIN_AR14
TEMP_SMDAT	SMBus data	$2.5-$ V	PIN_AP14
TEMP_OVERT_n	SMBus over-temperature alarm	$2.5-$ V	PIN_AK14
TEMP_INT_n	SMBus alert (interrupt)	$2.5-\mathbf{V}$	PIN_AH13
FAN_CTRL	Fan control	$1.5-$ V	PIN_B17

2.13 Power

The TR4 board features a standalone DC input rated at 19V.The DC voltage is stepped down to various power rails used by the components on the board and installed into the HSMC connectors.

■ Power Switch

The slide switch (SW7) is the board power switch for the DC power input. When the slide switch is in the ON position, the board is powered on. Alternatively when the switch is in the OFF position, the board is powered off.

2.14 Security

The TR4 board features design security to protect your designs against unauthorized copying, reverse engineering, and tampering of your configuration files. For more information, please refer to Altera's application note, "AN556: Using the Design Security Features in Altera FPGAs"

Chapter 3

Control Panel

The TR4 board comes with a PC-based Control Panel that allows users to access various components onboard. The host computer communicates with the board via USB-Blaster port. The tool can be used to verify the functionality of components.

This chapter presents some basic functions of the Control Panel, illustrates its structure in block diagram form, and finally describes its capabilities.

3.1 Control Panel Setup

The Control Panel software utility is located in the directory "/Tools/TR4_ControlPanel" in the TR4 System CD. To execute the program, simply copy the whole folder to your host computer and launch the control panel by double clicking the TR4_ControlPanel.exe.

CAUTION. Please make sure Quartus II and USB-Blaster Driver are installed before launching TR4 Control Panel. In addition, before the TR4 control panel is launched, it is imperative that the fan is installed on the Stratix IV GX device to prevent excessively high temperatures on the FPGA.

To activate the Control Panel, perform the following steps:

- Make sure Quartus II and Nios II are installed successfully on your PC.
- Connect the supplied USB cable to the USB Blaster port and the supplied power cord to J4. Turn the power switch ON.
- Verify the connection on the USB blaster is available and not occupied or used between Quartus and TR4.

Start the executable TR4_ControlPanel.exe on the host computer. Figure 3-1 will appear and the Control Panel starts to auto-detect the FPGA and download the .sof files.

After the configuration file is programmed to the TR4 board, the FPGA device information will be displayed on the window.

Note. The Control Panel will occupy the USB port; users will not be able to download any configuration file into the FPGA before you exit the Control Panel program.

Figure 3-1 Download .sof Files to the TR4 board

The Control Panel is now ready, as shown in Figure 3-2.

Figure 3-2 TR4 Control Panel is Ready

If the connection between TR4 board and USB-Blaster is not established, or the TR4 board is not powered on before running the TR4_ControlPanel.exe, the Control Panel will fail to detect the FPGA and a warning message window will pop up as shown in Figure 3-3.

Figure 3-3 The TR4 Control Panel Fails to Download .sof File

The concept of the TR4 Control Panel is illustrated in Figure 3-4. The "Control Codes" which performs the control functions is implemented in the FPGA board. It communicates with the Control Panel window, which is active on the host computer, via the USB Blaster link. The graphical user interface is used to issue commands to the control codes. It handles all requests and performs data transfer between the computer and the TR4 board.

Figure 3-4 TR4 Control Panel Block Diagram

The TR4 Control Panel can be used to illuminate the LEDs, monitoring buttons/switches status, read/write from various memory types, in addition to testing various components of the TR4 board.

3.2 Controlling the LEDs

One of the functions of the Control Panel is to set up the status of the LEDs. The tab-window shown in Figure 3-5 indicates where you can directly turn all the LEDs on or off individually by selecting them and clicking "Light All" or "Unlight All".

Figure 3-5 Controlling LEDs

3.3 Switches and Push-Buttons

Choose the Button tab as shown in Figure 3-6. This function is designed to monitor status of switches and buttons from a graphical user interface in real-time. It can be used to verify the functionality of switches and buttons.

Figure 3-6 Monitoring Switches and Buttons

3.4 Memory Controller

The Control Panel can be used to write/read data to/from the DDR3 SO-DIMM/Flash/SSRAM memory on the TR4 board. We will describe how the DDR3 SO-DIMM is accessed. Click on the Memory tab to reach the tab-window shown in Figure 3-7.

A 16-bit value can be written into the DDR3 SO-DIMM memory by three steps, namely specifying the address of the desired location, entering the hexadecimal data to be written, and pressing the Write button. Contents of the location can be read by pressing the Read button. Figure 3-8 depicts the result of writing the hexadecimal value 7EFF to location 0x100, followed by reading the same location.

The Sequential Write function of the Control Panel is used to write the contents of a file to the serial configuration device, as described below:

- Specify the starting address in the Address box.
- Specify the number of bytes to be written in the Length box. If the entire file is to be loaded, a check mark can be placed in the File Length box instead of giving the number of bytes.
- To initiate the writing of data, click on the Write a File to Memory button.
- When the Control Panel responds with the standard Windows dialog box asking for the source file, specify the desired file in the usual manner.

The Sequential Read function is used to read the contents of the serial configuration device and place them into a file as follows:

- Specify the starting address in the Address box.
- Specify the number of bytes to be copied into a file in the Length box. If the entire contents of the serial configuration device are to be copied, then place a check mark in the Entire Memory box.
- Press Load Memory Content to a File button.
- When the Control Panel responds with the standard Windows dialog box ask for the destination file, users can specify the desired file in the usual manner.

Figure 3-7 Access DDR3 SO-DIMM Memory

Figure 3－8 Writing the Hexadecimal Value 7EFF to Location 0x100

3．5 Temperature Monitor

Choose the Temperature tab to reach the window shown in Figure 3－9．This function is designed to control temperature sensor through the Control Panel．The temperatures of Stratix IV GX and TR4 board are shown on the right－hand side of the Control Panel．

When the temperature of Stratix IV GX exceeds the maximum setting of＇Over Temperature＇or ＇Alert＇，a warning message will be shown on the Control Panel．Click＂Read＂button to get current settings for＇Over temperature＇and＇Alert＇．Users can enter the maximum and minimum temperatures for＇Over temperature＇or＇Alert＇as required．Click the Write button to update the values entered．

Figure 3-9 Accessing the Temperature Sensor through Control Panel

3.6 PLL

The PLL function is designed to configure the external programmable PLL on the TR4. There are 3 programmable clocks for the TR4 board that generates reference clocks for the following signals HSMA_REFCLK_p/n, HSMB_REFCLK_p/n, and PGM_GXBCLK_p1/n1. The clock frequency can be adjusted to $62.5,75,100,125,150,156.25,187.5,200,250,312.5$, and 625 MHz . Choose the 'PLL' tab to reach the window shown in Figure 3-10. To set the desire clock frequency for the associated clock signal, click on 'Set'.

Figure 3-10 Programmable External PLL Configured through Control Panel

3.7 HSMC

Choose the HSMC tab to reach the window shown in Figure 3-11. This function is designed to verify the functionality of signals found on the HSMC connectors of ports A, B, C, D, E and F using a loopback approach. Before running the loopback verification HSMC test, select the desired HSMC connector to be tested. Follow the instruction noted under Loopback Installation section and click on 'Verify'. Note the Control Panel HSMC loopback test does not test the transceiver signals on the HSMC interface. For HSMC transceiver loopback test, please refer to the demonstration section.

CAUTION. Turn off the TR4 board before the HSMC loopback adapter is mounted to prevent any damage to the TR4 board.

Figure 3-11 HSMC Loopback Verification Test Performed under Control Panel

3.8 Fan

Choose the Fan tab to reach the window shown in Figure 3-12. This function is designed to verify the functionality of the fan components and signals. Please make sure the fan is installed on the TR4 before running this function.

Figure 3-12 Fan Control of the TR4

3.9 Information

For more information, please click on the Information button in order to reach the window shown in Figure 3-13., Users can click "Terasic Web" button and "TR4_Web" button to reach the respective websites in order to learn more about the TR4 and Terasic Technologies.

Figure 3-13 Information Tab of TR4 Control Panel

Chapter 4

TR4 System Builder

This chapter describes how users can create a custom design project on the TR4 board by using the included TR4 software tool - TR4 System Builder.

4.1 Introduction

The TR4 System Builder is a Windows-based software utility, designed to assist users in creating a Quartus II project for the TR4 board within minutes. The generated Quartus II project files include:

- Quartus II Project File (.qpf)
- Quartus II Setting File (.qsf)
- Top-Level Design File (.v)
- External PLL Controller (.v)
- Synopsis Design Constraints file (.sdc)
- Pin Assignment Document (.htm)

The TR4 System Builder not only can generate the files above, but can also provide error-checking rules to handle situations that are prone to errors. The common mistakes that users encounter are the following:

- Board damaged due to wrong pin/bank voltage assignments
- Board malfunction caused by wrong device connections or missing pin counts for connections
- Poor performance drop due to improper pin assignments

4.2 General Design Flow

This section will introduce the general design flow to build a project for the TR4 board via the TR4 System Builder. The general design flow is illustrated in the Figure 4-1.

Users should launch TR4 System Builder and create a new project according to their design requirements. When users complete the settings, the TR4 System Builder will generate two major files which include a top-level design file (.v) and the Quartus II settings file (.qsf).

The top-level design file contains a top-level Verilog wrapper for users to add their own design/logic. The Quartus II settings file contains information such as FPGA device type, top-level pin assignments, and I/O standards for each user-defined I/O pin.

Finally, Quartus II programmer must be used to download SOF file to TR4 board using JTAG interface.

Figure 4-1 General Design Flow

4.3 Using TR4 System Builder

This section provides the detail procedures on how the TR4 System Builder is used.

■ Install and launch the TR4 System Builder

The TR4 System Builder is located in the directory: "Tools\TR4_SystemBuilder" in the TR4 System CD. Users can copy the whole folder to a host computer without installing the utility. Before using the TR4 System Builder, execute the TR4_SystemBuilder.exe on the host computer as appears in Figure 4-2.

Figure 4-2 TR4 System Builder Window

- Select Board Type and Input Project Name

Select the target board type and input project name as show in Figure 4-3.

- Board Type: Select the appropriate FPGA device according to the TR4 board which includes the EP4SGX230 and EP4SGX530 devices.
- Project Name: Specify the project name as it is automatically assigned to the name of the
top-level design entity.

Figure 4-3 TR4 Board Type and Project Name

- System Configuration

Under System Configuration, users are given the flexibility of enabling their choice of components on the TR4 as shown in Figure 4-4. Each component of the TR4 is listed where users can enable or disable a component according to their design by simply marking a check or removing the check in the field provided. If the component is enabled, the TR4 System Builder will automatically generate the associated pin assignments including the pin name, pin location, pin direction, and I/O standards.

Note. The pin assignments for some components for e.g. DDR3 require associated controller codes in the Quartus II project otherwise Quartus II will result in compilation errors. Therefore, do not select them if they are not necessary in your design.

Figure 4-4 System Configuration Group

- Programmable PLL

There are three external programmable PLLs on-board that provide reference clocks for the following signals HSMA_REFCLK, HSME_REFLCLK and PGM_GXBCLK. To use these PLLs, users can select the desired frequency on the Programmable PLL group, as shown in Figure 4-5.

As the Quartus II project is created, System Builder automatically generates the associated PLL configuration code according to users' desired frequency in Verilog which facilitates users' implementation as no additional control code is required to configure the PLLs.

Note. If users need to dynamically change the frequency, they will need to modify the generated control code themselves.

Figure 4-5 External Programmable PLL

- HSMC Expansion

Users can connect HSMC-interfaced daughter cards onto the HSMC ports located on the TR4 board shown in Figure 4-6. Select the daughter card you wish to add to your design under the appropriate HSMC connector where the daughter card is connected to. The System Builder will automatically generate the associated pin assignment including pin name, pin location, pin direction, and IO standard.

If a customized daughter board is used, users can select "HSMC Default" followed by changing the pin name, pin direction, and IO standard according to the specification of the customized daughter board. If transceiver pins are not required on the daughter board, please remember to remove it, otherwise Quartus II will report errors.

Figure 4-6 HSMC Expansion Group
The "Prefix Name" is an optional feature that denotes the pin name of the daughter card assigned in your design. Users may leave this field empty.

Note. If the same HSMC daughter card is selected in both HSMC-A and HSMC-B expansion, a prefix name is required to avoid pin name duplication as shown in Figure 4-7, otherwise System Builder will prompt an error message.

Figure 4-7 Specify Prefix Name for HSMC Expansion Board
Additionally, users can choose the "HSMC-C/GPIO" as either "HSMC" or "GPIO", since the GPIO ports share pins with HSMC Port C as shown in Figure 4-8.

Figure 4-8 HSMC-C/GPIO share pins option

After users select the "GPIO" option, a "GPIO Edit" button will appear. If this is clicked, a "GPIO Expansion" window will pop up for users to select a compatible Terasic daughter card. Once a daughter card selected, the JP4 header diagram in the upper left hand corner of the window, which configures HSMC Port C and GPIO I/O standards will adjust automatically to recommend a suitable I/O standard for the selected daughter card as shown in Figure 4-9.

Figure 4-9 GPIO option and I/O standard recommend

- Project Setting Management

The TR4 System Builder also provides functions to restore a default setting, loading a setting, and saving users' board configuration file shown in Figure 4-10. Users can save the current board configuration information into a .cfg file and load it to the TR4 System Builder.

Figure 4-10 Project Settings

- Project Generation

When users press the Generate button, the TR4 System Builder will generate the corresponding Quartus II files and documents as listed in the Table 4-1 in the directory specified by the user.

Table 4-1 Files Generated by TR4 System Builder

No.	Filename	Description
$\mathbf{1}$	<Project name>.v	Top level Verilog file for Quartus II
2	EXT_PLL_CTRL.v	External PLL configuration controller IP
3	<Project name>.qpf	Quartus II Project File
4	<Project name>.qsf	Quartus II Setting File
5	<Project name>.sdc	Synopsis Design Constraints file for Quartus II

$6 \quad<$ Project name>.htm Pin Assignment Document

Users can use Quartus II software to add custom logic into the project and compile the project to generate the SRAM Object File (.sof).

In addition, External Programmable PLL Configuration Controller IP will be instantiated in the Quartus II top-level file as listed below:

```
ext_pll_ctrl u_ext_pll_ctrl
    // system input
    .osc_50(OSC_50_BANK1),
    .rstn(rstn),
    // device 1
    .clk1_set_wr(clk1_set_wr),
    .clk1_set_rd(),
    // device 2
    .clk2_set_wr(clk2_set_wr),
    .clk2_set_rd(),
    // device 3
    .clk3_set_wr(clk3_set_wr),
    .clk3_set_rd(),
    // setting trigger
    .conf_wr(conf_wr), // 1T 50MHz
    .conf_rd(), // 1T 50MHz
    // status
    .conf_ready(),
    // 2-wire interface
    .max_sclk(MAX2_I2C_SCL),
    .max_sdat(MAX2_I2C_SDA)
;
```

If dynamic PLL configuration is required, users need to modify the code according to users' desired PLL behavior.

Chapter 5

Examples of Advanced Demonstration

This chapter introduces several advanced designs that demonstrate Stratix IV GX features using the TR4 board. The provided designs include the major features on board such as the HSMC connectors, PCIe, and DDR3. For each demonstration the Stratix IV GX FPGA configuration file is provided, as well as full source code in Verilog HDL. All of the associated files can be found in the demonstrations \backslash tr4_<Stratix device> folder from the TR4 System CD. For each of demonstrations described in the following sections, we give the name of the project directory for its files, which are sub-directories of the demonstrations\tr4_<Stratix_device〉folder.

5.1 Breathing LEDs

This demonstration shows how to use the FPGA to control the luminance of the LEDs by means of dividing frequency. By dividing the frequency from 50 MHz to 1 Hz , you can see LED flash once per second.

- Design Tools

- Quartus II 11.1

- Demonstration Source Code

- Project directory: Breathing_LEDs
- Bit stream used: Breathing_LEDs.sof

- Demonstration Batch File

- Demo Batch File Folder: Breathing_LEDs \backslash Demo_batch

The demo batch file includes following files:

- Batch File: Breathing_LEDs.bat
- FPGA Configuration File: Breathing_LEDs.sof

- Demonstration Setup

- Make sure Quartus II and Nios II are installed on your PC.
- Connect the USB Blaster cable to the TR4 board and host PC. Install the USB Blaster driver if necessary.
- Power on the TR4 board.
- Execute the demo batch file "Breathing_LEDs.bat" under the batch file folder, TR4_Breathing_LEDs\Demo_batch.
- Press BUTTON0 of the TR4 board to reset.
- The LEDs will pulse according to the set frequency.

5.2 External Clock Generator

The External Clock Generator provides designers with 3 programmable clock generators via Texas Instruments chips (CDCM61001RHBT x 2, CDCM61004RHBT) with the ability to specify the clock frequency individually, as well as addressing the input reference clock for the Stratix IV GX transceivers. The programmable clock is controlled by a control bus connected to the MAX II EPM2210 device. This can reduce the Stratix IV GX I/O usage while enabling greater functionality on the FPGA device. The MAX II EPM2210 device is capable of storing the last entered clock settings at which in the event the board restarts, the last known clock settings are fully restored. In this demonstration, we illustrate how to utilize the clock generators IP to define the clock output using the serial bus. The programmable clock outputs generate clock signals HSMA_REFCLK_p/n (CDCM61001/01), PGM_GXBCLK_p1/n1 (CDCM61004), and HSME_REFCLK_p/n (CDCM61001/02) with adjustable output clock frequencies of $62.5,75,100,125,150,156.25$, $187.5,200,250,312.5$, and 625 MHz . The I/O standard for the clock frequencies is set to LVDS which is not configurable.

An overall block diagram of the external clock generator is shown below in Figure 5-1.

Figure 5-1 External Clock Generator Block Diagram

The EXT_PLL_CTRL IP Port Description

This section describes the operation for the EXT_PLL_CTRL instruction hardware port. Figure 5-2 shows the EXT_PLL_CTRL instruction block diagram connected to the MAX II EPM2210 device. The EXT_PLL_CTRL controller module is defined by a host device, the Stratix IV GX FPGA and a slave device, the MAX II EPM2210. Through the I2C bus interface, the EXT_PLL_CTRL controller is able to control the Max II device by specifying the desire clock outputs set by the user. By changing the IP parameters of the Terasic EXT_PLL_CTRL IP, the external clock output
frequency can be adjusted accordingly.

Figure 5-2 EXT_PLL_CTRL Instruction Hardware Ports
Table 5-1 lists the EXT_PLL_CTRL instruction ports
Table 5-1 EXT_PLL_CTRL Instruction Ports

Port Name	Direction	Description
osc_50	input	System Clock (50MHz)
rstn	input	Synchronous Reset (0: Module Reset, 1: Normal)
clk1_set_wr clk2_set_wr clk3_set_wr	input	Setting Output Frequency Value
clk1_set_rd clk2_set_rd clk3_set_rd	output	Read Back Output Frequency Value
conf_wr	Input	Start to Transfer Serial Data (postive edge)
conf_rd	Input	Start to Read Serial Data (postive edge)
conf_ready	Output	Serial Data Transmission is Complete (0 : Transmission in Progress, 1: Transmission Complete)
max_sclk	Output	Serial Clock to MAX II
max_sdat	Inout	Serial Data to/from MAX II

- The EXT_PLL_CTRL IP Parameter Setting

Users can refer to the following Table 5-2 to set the external clock generator for the output frequency.

Table 5-2 EXT_PLL_CTRL Instruction Ports

clk1_set_wr/ clk2_set_wr/	Output Frequency (MHz)	Description
		85

clk3_set_wr		
4'b0001	x	Clock Generator Disable
4'b0010	62.5	Setting External Clock Generator
4'b0011	75	
4'b0100	100	
4'b0101	125	
4'b0110	150	
4'b0111	156.23	
4'b1000	187	
4'b1001	200	
4'b1010	250	
4'b1011	312.5	
4'b1100	625	
Others	x	Setting Unchanged

■ The EXT_PLL_CTRL IP Timing Diagram

In this reference design the output frequency is set to $62.5,75$ and 100 MHz with the following timing diagrams illustrated below.

When the ext_pll_ctrl IP receives the 'conf_wr' signal, the user needs to define (clk1_set_wr, clk2_set_wr and clk3_set_wr) to set the External Clock Generator. When the ext_pll_ctrl IP receives the 'conf_rd' signal, it will read the value back to clk1_set_rd, clk2_set_rd, and clk3_set_rd.

Write Timing Waveform:

As BUTTON0 (the trigger source defined by Terasic) is pressed, the 'conf_wr' signal is on the rising edge, serial data is transferred immediately with the 'conf_ready' signal in the transmission period starting at falling edge level as shown in Figure 5-3. As the transfer is completed, the 'conf_ready' signal returns back to original state at high-level.

Figure 5-3 Write Timing Waveform

Read Timing Waveform:

As BUTTON1 (the trigger source defined by Terasic) is pressed the 'conf_rd' signal is on the rising edge, the user settings are read back immediately once the 'conf_ready' signal is on the falling edge as shown in Figure 5-4. As the transfer is complete, the 'conf_ready' returns back to original state at high-level.

Figure 5-4 Read Timing Waveform

- Design Tools
- Quartus II 11.1
- Demonstration Source Code
- Project directory: TR4_EXT_PLL
- Bit stream used: TR4_EXT_PLL.sof
- Demonstration Batch File
- Demo Batch File Folder: TR4_EXT_PLLldemo_batch

The demo batch file folders include the following files:

- Batch File: TR4_EXT_PLL.bat
- FPGA Configuration File: TR4_EXT_PLL.sof

- Demonstration Setup

- Make sure Quartus II is installed on your PC.
- Connect the USB Blaster cable to the TR4 board and host PC. Install the USB Blaster driver if necessary.
- Power on the TR4 board.
- Execute the demo batch file "TR4_EXT_PLL.bat" under the batch file folder, TR4_EXT_PLL\demo_batch
- Press BUTTON0 to configure the external PLL chips via MAX CPLD.

5.3 High Speed Mezzanine Card (HSMC)

The HSMC loopback demonstration reference design observes the traffic flow with an HSMC loopback adapter which provides a quick way to implement your own design utilizing the transceiver signals situated on the HSMC interface. This design also helps you verify the transceiver signals functionality for ports A and E of the HSMC interface. A total of 8 transceiver pairs on the HSMC Port A and port E each are tested.

HSMC Port A Loopback Test:

- Demonstration Source Code

Quartus Project directory: TR4_HSMA_LOOPBACK_TEST

FPGA Bit Stream: TR4_HSMA_LOOPBACK_TEST.sof

- Demonstration Setup

- Check that Quartus II and Nios II are installed on your PC.
- Insert the HSMC loopback adapter onto the HSMC Port A.
- Connect the USB Blaster cable to the TR4 board and host PC. Install the USB Blaster driver if necessary.
- Power on the TR4 board.
- Program the TR4 using the TR4_HSMA_LOOPBACK_TEST.sof through Quartus II programmer.
- Press BUTTON0 of the TR4 board to initiate the verification process.
- LED [3:0] will flash indicating the loopback test passed.

HSMC Port E Loopback Test:

- Demonstration Source Code

Quartus Project directory: TR4_HSME_LOOPBACK_TEST
FPGA Bit Stream: TR4_HSME_LOOPBACK_TEST.sof

- Demonstration Setup

- Check that Quartus II and Nios II are installed on your PC.
- Insert the HSMC loopback daughter card onto the HSMC Port E as shown in Figure 5-5.
- Connect the USB Blaster cable to the TR4 board and host PC. Install the USB Blaster driver if necessary.
- Power on the TR4 board.
- Program the TR4 using the TR4_HSME_LOOPBACK_TEST.sof through Quartus II programmer.
- Press BUTTON0 on the TR4 board to initiate the verification process
- LED [3:0] will flash once to indicate the loopback test passed.

Figure 5-5 HSMC Loopback Design Setup

5.4 DDR3 SDRAM (1GB)

Many applications use a high performance RAM, such as a DDR3 SDRAM to provide temporary storage. In this demonstration hardware and software designs are provided to illustrate how the DDR3 SDRAM SODIMM on the TR4 can be accessed. We describe how the Altera's "DDR3 SDRAM Controller with UniPHY" IP is used to create a DDR3-SDRAM controller, and how the Nios II processor is used to read and write the SDRAM for hardware verification. The DDR3 SDRAM controller handles the complex aspects of using DDR3-SDRAM by initializing the memory devices, managing SDRAM banks, and keeping the devices refreshed at appropriate intervals. The required DDR3-SDRAM SODIMM module should be 1 GB DDR3-1066.

- System Block Diagram

Figure 5-6 shows the system block diagram of this demonstration. The system requires a 50 MHz clock provided from the board. The DDR3 controller is configured as a 1GB DDR3-1066 controller. The DDR3 IP generates one 533.0 MHz clock as memory clock and one quarter-rate system clock 133.125 MHz for controllers, e.g. Nios II processor, accessing the SDRAM. In Qsys, Nios II and On-Chip Memory are designed running with the 133.125 MHz clock, and the other controllers are designed running with 50 MHz clock which is the external clock. The Nios II program itself is running in the on-chip memory.

Figure 5-6 Block diagram of the DDR3 1G demonstration

The system flow is controlled by a Nios II program. First, the Nios II program writes test patterns into the DDR3, filling it up to maximum capacity. Then, it calls a Nios II system function,
alt_dache_flush_all, to make sure all data has been written. Finally, it reads data from DDR3 for data verification. The program will show progress in JTAG-Terminal when writing/reading data to/from the DDR3. When the verification process is completed, the result is displayed in the JTAG-Terminal.

- Altera DDR3 SDRAM Controller with UniPHY

To use the Altera DDR3 controller, users need to perform three major steps: 1). Create correct pin assignments for the DDR3. 2). Set up correct parameters in DDR3 controller dialog. 3). Execute TCL files, generated by DDR3 IP, under your Quartus II project.

The following section describes some of the important issues in support of the DDR3 controller configuration. On the "PHY_Setting" tab, in order to achieve 533.0 MHz clock frequency, a reference clock frequency of 50 MHz should be used. If a different DDR3 SODIMM is used, the memory parameters should be modified according to the datasheet of the DDR3 SODIMM.

- Design Tools
- Quartus II 11.1
- Nios II IDE 11.1

- Demonstration Source Code

- Project directory: TR4_DDR3_UniPHY_1G_QSYS
- Bit stream used: TR4_DDR3_UniPHY_1G_QSYS.sof
- Nios II Workspace: TR4_DDR3_UniPHY_1G_QSYS\Software

Demonstration Batch File

Demo Batch File Folder: TR4_DDR3_UniPHY_1G_QSYS\demo_batch

The demo batch file includes following files:

- Batch File: TR4_DDR3_UniPHY_1G_QSYS.bat, TR4_DDR3_UniPHY_1G_QSYS_bashrc
- FPGA Configuration File: TR4_DDR3_UniPHY_1G_QSYS.sof
- Nios II Program: TR4_DDR3_UniPHY_1G_QSYS.elf

- Demonstration Setup

- Make sure Quartus II and Nios II are installed on your PC.
- Make sure DDR3-SDRAM SODIMM (1G) is inserted into your TR4 board, as shown in Figure 5-7.
- Connect the USB Blaster cable to the TR4 board and host PC. Install the USB Blaster driver if necessary.
- Power on the TR4 board.
- Execute the demo batch file "TR4_DDR3_UniPHY_1G_QSYS.bat" under the batch file folder, TR4_DDR3_UniPHY_1G_QSYS\demo_batch.
- After Nios II program is downloaded and executed successfully, a prompt message will be displayed in nios2-terminal.
- Press BUTTON3~BUTTON0 of the TR4 board to start the DDR3 verification process. Press BUTTON0 to continue the test and Ctrl+C to terminate the test
- The program will display the progress and result, as shown in Figure 5-8

Figure 5-7 Insert the DDR3-SDRAM SODIMM for the DDR3 1G Demonstration

Figure 5-8 Display Progress and Result for the DDR3 1G Demonstration

5.5 DDR3 SDRAM (4GB)

This demonstration presents user a basic utilization of DDR3-SDRAM (4G) on TR4.It describes how the Altera's "DDR3 SDRAM Controller with UniPHY" IP is used to create a DDR3-SDRAM controller, and modify the IP-generated example top to test the entire space of DDR3-SDRAM. This demonstration is a pure RTL project. The required DDR3-SDRAM SODIMM module should be exactly 4 GB of DDR3-1066.

■ Function Block Diagram

Figure 5-9 shows the function block diagram of this demonstration. The DDR3 controller is configured as a 4GB DDR3-1066 controller. The DDR3 IP generates one 533.0 MHz clock as memory clock and one half-rate system clock, 266.5 MHz , for the controller.

Figure 5-9 Block Diagram of the DDR3 4G Demonstration

The project is based on the example top code which is generated by the DDR3 IP, and can be used to test the whole module after modifying the code. In the project, example driver will read out the data for a comparison after writing every 1 KB pseudo-random data. The read compare module will buffer the write data, and then compare it with the data read back. If the right result is achieved, the address will be accumulated and the test will check the whole memory span of 4GB after finishing 4*1024*1024 loops.

- Altera DDR3 SDRAM Controller with UniPHY

To use Altera DDR3 controller, users need to perform three major steps: 1). Create correct pin assignment for DDR3. 2). Setup correct parameters in DDR3 controller dialog. 3). Execute TCL files, generated by DDR3 IP, under your Quartus project.

The following section describes some of the important issues in support of the DDR3 controller configuration. On the "PHY_Setting" tab, in order to achieve 533.0 MHz clock frequency, a reference clock frequency of 50 MHz should be used.

- Design Tools

- Quartus II 11.1

- Demonstration Source Code

- Project directory: TR4_DDR3_UniPHY_4G_RTL
- Bit stream used: TR4_DDR3_UniPHY_4G_RTL.sof

- Demonstration Batch File

Demo Batch File Folder: TR4_DDR3_UniPHY_4G_RTL\demo_batch

The demo batch file includes following files:

- Batch File: TR4_DDR3_UniPHY_4G_RTL.bat
- FPGA Configure File: TR4_DDR3_UniPHY_4G_RTL.sof

■ Demonstration Setup

- Make sure Quartus II is installed on your PC.
- Make sure DDR3-SDRAM SODIMM (4 GB) is installed on your TR4 board, as shown in Figure 5-10.
- Connect the USB Blaster cable to the TR4 board and host PC. Install the USB Blaster driver if necessary.
- Power on the TR4 board.
- Execute the demo batch file "TR4_DDR3_UniPHY_4G_RTL.bat" under the batch file folder, TR4_DDR3_UniPHY_4G_RTL \demo_batch.
- Press BUTTON0 of the TR4 board to start the verification process. When BUTTON0 is pressed, all the LEDs go out. At the instant of releasing BUTTON0, LED3 should turn on (local_init_done). After approximately 15 seconds, if LED0 and LED1 turn on, the test has passed.
- If LED2 turns on at any time during the process, the test has failed. Table 5-3 lists the function for different LEDs.
- Press BUTTON0 to reset the process for a repeat test.

Figure 5-10 Insert DDR3-SDRAM SODIMM for the DDR3 4G Demonstration

Table 5-3 LED Indicators

NAME	Description
LED0	test complete
LED1	test pass
LED2	test fail
LED3	local_init_done \& local_cal_success

Chapter 6

PCI Express Reference Design

PCI Express is commonly used in consumer, server, and industrial applications to link motherboard-mounted peripherals. From this demonstration, it will show how the PC and FPGA communicate with each other through the PCI Express interface.

The PCIe drivers used in this example design are from Jungo. For more information, please check out www.jungo.com.

6.1 PCI Express System Infrastructure

The system consists of two primary components, the FPGA hardware implementation and the PC-based application. The FPGA hardware component is developed based on Altera PCIe IP, and the PC-based application is developed under the Jungo driver. Figure 6-1 shows the system infrastructure.

Figure 6-1 PCI Express System Infrastructure

6.2 FPGA PCI Express System Design

The TR4 PCI Express connector is able to allow interconnection to the PCIe motherboard slots via PCIe adapter card and cable. For more information on the PCIe adapter card and cable, please consult Section 2.9. For basic I/O control, communication is established through the PCI Express bus where it is able to control the LEDs and monitor the status of the TR4 buttons. By implementing an internal RAM and FIFO, the demonstration is capable of direct memory access (DMA) transfers.

- PCI Express Basic I/O Transaction

Under a read operation, the Terasic PCIe IP issues a read signal followed by the address of the data. Once the address is received, a 32-bit data will be sent along with a read valid signal. Under a write operation, the PCIe IP issues a write signal along with the address to be written. A 32-bit data is written to the corresponding address with a data enable signal of write operation. All the write commands are issued on the same clock cycle. Table 6-1 lists the associated port names along with the description.

Table 6-1 Single Cycle Transaction Signals of Terasic PCIe IP

Name	Type	Polarity	Description
oCORE_CLK	Output	-	Clock. The reference clock output of PCle local interface.
oSC_RD_ADDR[11..0]	Output	-	Address bus of read transaction. It is a 32-bit data per address.
iSC_RD_DATA [31..0]	Input	-	Read data bus.
OSC_RD_READ	Output	High	Read signal.
ISC_RD_DVAL	Input	High	Read data valid.
oSC_WR_ADDR[11..0]	Output	-	Address bus of write transaction. It is a 32-bit data per address.
oSC_WR_DATA[31..0]	Output	-	Write data bus.
OSC_WR_WRITE	Output	High	Write signal.

Figure 6-2 Read Transaction Waveform of the PCle Basic I/O Interface

Figure 6-3 Write Transaction Waveform of the PCle Basic I/O Interface

- PCI Express DMA Transaction

To support greater bandwidth and to improve latency, Terasic PCIe IP provides a high speed DMA channel with two modes of interfaces including memory mapping and FIFO link. The oFIFO_MEM_SEL signal determines the DMA channel used, memory mapping or FIFO link, which is enabled with the assertion of a low and high signal, respectively. The address bus of DMA indicates the FIFO ID which is defined by users from the PC software API.

Most interfaces experience read latency during the event data is read and processed to the output. To mitigate the overall effects of read latency, minimum delay and timing efficiency is required to enhance the performance of the high-speed DMA transfer. As oDMARD_READ signal is asserted, the read data valid signal oDMARD_RDVALID is inserted high to indicate the data on the iDMARD_DATA data bus is valid to be read after two clock cycles.

Table 6-2 DMA Channel Signals of Terasic PCIe IP

Name	Type	Polarit	Description
oCORE_CLK	Output	-	Clock. The reference clock output of PCle local interface.
oDMARD_ADDR[31..0]	Output		When oFIFO_MEM_SEL is set to low, it is address bus of DMA transfer and the value of address bus is cumulative by PCle IP and it is 128 -bit data per address. When oFIFO_MEM_SEL is set to high, oDMARD_ADDR bus is a FIFO ID that is used to indicate that which FIFO buffer is selected by PC API.
iDMARD_DATA [127..0]	Input	-	Read data bus.
oDMARD_READ	Output	High	Read signal.
iDMARD_RDVALID	Input	High	Read data valid.
oDMAWR_ADDR[31..0]	Output		When oFIFO_MEM_SEL is set to low, it is address bus of DMA transfer and the value of address bus is cumulative by PCle IP and it is $\mathbf{1 2 8}$-bit data per address. When oFIFO_MEM_SEL is set to high, oDMARD_ADDR bus is a FIFO ID that is used to indicate that which FIFO buffer is selected by PC API.
oDMAWR_DATA[127..0]	Output	-	Write data bus.
oDMAWR_WRITE	Output	High	Write signal.
OFIFO_MEM_SEL	Output		Indicates that DMA channel is memory mapping interface or FIFO-link interface. When this signal is asserted high, DMA channel FIFO-link interface. When the signal is asserted low, it is memory mapping interface.

Figure 6-4 Read Transaction Waveform of the PCle DMA Channel on Memory Mapping Mode

Figure 6-5 Write Transaction Waveform of the PCle DMA channel on memory mapping mode

Figure 6-6 Read Transaction Waveform of the PCle DMA Channel in FIFO-link Mode

Figure 6－7 Write Transaction Waveform of the PCle DMA Channel in FIFO－link Mode

6．3 PC PCI Express System Design

The TR4 CD contains a PC Windows－based SDK to allow users to develop their software application．The SDK（demonstrations\tr4＿＜Stratix device＞\PCIe＿SDK）includes：
－PCI Express Driver
－PCI Express Library

The kernel mode driver requires users to modify the PCIe vendor ID（VID）and device ID（DID）in the driver INF file to match the design in the FPGA where Windows searches for the associated driver．

Note．The kernel mode driver currently only supports Windows XP 32－bit Edition provided by Jungo Inc，which can be found at www．jungo．com．

The PCI Express Library is implemented as a single DLL called TERASIC＿PCIE．DLL．With the DLL exported to the software API，users can easily communicate with the FPGA．The library provides the following functions：
－Device Scanning on PCIe Bus
－Basic Data Read and Write
－Data Read and Write by DMA

For high performance data transmission，DMA is required as the read and write operations are specified under the hardware design on the FPGA．

- PCI Express Software Stack

Figure 6-8 shows the software stack for the PCI Express application software. The PCI Express driver is incorporated in the DLL library called TERASIC_PCIE.DLL. Users can develop their application based on this DLL.

Figure 6-8 PCI Express Software Stack

- Install PCI Express Driver

To install the PCI Express driver, execute the steps below:

1. From the TR4 system CD locate the PCIe driver folder in the directory ITR4_CDROM\demonstrations\<TR4 device>\PCIe_SDK/Driver.
2. Double click the "PCIe_DriverInstall.exe" executable file to launch the installation program shown in Figure 6-9.

Figure 6-9 PCle Driver Installation Program
3. Click "Install" to begin installation process.
4. It takes several seconds to install the driver. When installation is complete, the following dialog window will popup shown in Figure 6-10. Click "OK" and then "Exit" to close the installation program.

Figure 6-10 PCle Driver Installed Successfully
5. Once the driver is successfully installed, users can view the device under the device manager window shown in Figure 6-11.

Figure 6-11 Device Manager

- Create a Software Application

All necessary files to create a PCIe software application are located in the PCIe_SDK\Library which includes the following files:

- TERASIC_PCIE.h
- TERASIC_PCIE.DLL

Below lists the procedures to use the SDK files in a C/C++ project :

- Create $\mathrm{C} / \mathrm{C}++$ project.
- Include TERASIC_PCIE.h in the C/C++ project.
- Copy TERASIC_PCIE.DLL to the folder where the project.exe is located.
- Dynamically load TERASIC_PCIE.DLL in C/C++ project. To load the DLL, please refer to the two examples below.
- Call the SDK API to implement desired application.

■ TERASIC_PCIE.DLL Software API

Using the TERASIC_PCIE.DLL software API, users can easily communicate with the FPGA through the PCIe bus. The API details are described below :

PCIE_ScanCard

Function:

Lists the PCIe cards which matches the given vendor ID and device ID. Set Both ID to zero to lists the entire PCIe card.

Prototype:

BOOL PCIE_ScanCard(
WORD wVendorID,
WORD wDeviceID,
DWORD *pdwDeviceNum,
PCIE_CONFIG szConfigList[]);

Parameters:

wVendorID:
Specify the desired vendor ID. A zero value means to ignore the vendor ID.
wDeviceID:
Specify the desired device ID. A zero value means to ignore the produce ID.
pdwDeviceNum:
A buffer to retrieve the number of PCIe card which is matched by the desired vendor ID and product ID.
szConfigList:
A buffer to retrieve the device information of PCIe card found which is matched by the desired vendor ID and device ID.

Return Value:

Return TRUE if PCIe cards are successfully enumeated; otherwise, FALSE is return.

PCIE_Open

Function:

Open a specified PCIe port with vendor ID, device ID, and matching card index.

Prototype:

PCIE_HANDLE PCIE_Open(
WORD wVendorID,
WORD wDeviceID,
WORD wCardIndex);

Parameters:

wVendorID:
Specify the desired vendor ID. A zero value means to ignore the vendor ID.
wDeviceID:
Specify the desired device ID. A zero value means to ignore the device ID.
wCardIndex:
Specify the matching card index, a zero-based index, based on the matching vendor ID and device ID.

Return Value:

Returns a handle to present the specified PCIe card. A positive value is returned if the PCIe port is opened successfully. A value zero means failed to connect the target PCIe card.
This handle value is used as a parameter for other functions, e.g. PCIE_Read32.
Users need to call PCIE_Close to release handle once the handle is not used anymore.

PCIE_Close

Function:

Close a handle associated to the PCIe card.
Prototype:
void PCIE_Close(PCIE_HANDLE hPCIE);

Parameters:

hPCIE:
A PCIe handle return by PCIE_Open function.

Return Value:

None.

PCIE_Read32

Function:

Reads 32-bit data from the FPGA board.

Prototype:

bool PCIE_Read32(
PCIE_HANDLE hPCIE,
PCIE_BAR PcieBar,
PCIE_ADDRESS PcieAddress, DWORD * pdwData);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.
PcieBar:
Specify the target BAR.
PcieAddress:
Specify the target address in FPGA.
pdwData:
A buffer to retrieve the 32-bit data.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

PCIE_Write32

Function:

Write a 32 -bit data to the FPGA Board.

Prototype:

bool PCIE_Write32(
PCIE_HANDLE hPCIE,
PCIE_BAR PcieBar,
PCIE_ADDRESS PcieAddress, DWORD dwData);

Parameters:
hPCIE:
A PCIe handle return by PCIE_Open function.
PcieBar:
Specify the target BAR.
PcieAddress:
Specify the target address in FPGA.
dwData:
Specify a 32-bit data which will be written to the FPGA board.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

PCIE_DmaRead

Function:

Read data from the memory-mapped memory of FPGA board in DMA function.

Prototype:

A $\sqrt{7}$ 扂跑

```
bool PCIE_DmaRead(
    PCIE_HANDLE hPCIE,
    PCIE_LOCAL_ADDRESS LocalAddress,
    void *pBuffer,
    DWORD dwBufSize
    );
```


Parameters:

hPCIE:
A PCIe handle return by PCIE_Open function.
LocalAddress:
Specify the target memory-mapped address in FPGA.
pBuffer:
A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or larger than the dwBufSize.
dwBufSize:
Specify the byte number of data retrieved from FPGA.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

PCIE_DmaWrite

Function:

Write data to the memory-mapped memory of FPGA board in DMA function.

Prototype:

bool PCIE_DmaWrite(
PCIE_HANDLE hPCIE,
PCIE_LOCAL_ADDRESS LocalAddress,
void *pData,
DWORD dwDataSize
);

Parameters:

hPCIE:
A PCIe handle return by PCIE_Open function.
LocalAddress:
Specify the target memory mapped address in FPGA.
pData:

A pointer to a memory buffer to store the data which will be written to FPGA.
dwDataSize:
Specify the byte number of data which will be written to FPGA.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

PCIE_DmaFifoRead

Function:

Read data from the memory FIFO of the FPGA board in DMA function.

Prototype:

bool PCIE_DmaFifoRead(
PCIE_HANDLE hPCIE,
PCIE_LOCAL_FIFO_ID LocalFifoId,
void *pBuffer,
DWORD dwBufSize
);

Parameters:

hPCIE:
A PCIe handle return by PCIE_Open function.
LocalFifoId:
Specify the target memory FIFO ID in FPGA.
pBuffer:
A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or larger the dwBufSize.
dwBufSize:
Specify the byte number of data retrieved from FPGA.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

PCIE_DmaFifoWrite

Function:

Write data to the memory FIFO of the FPGA board in DMA function.

Prototype:

```
bool PCIE_DmaFifoWrite(
    PCIE_HANDLE hPCIE,
    PCIE_LOCAL_FIFO_ID LocalFifoId,
    void *pData,
    DWORD dwDataSize
    );
```


Parameters:

hPCIE:
A PCIe handle return by PCIE_Open function.
LocalFifoId:
Specify the target memory FIFO ID in FPGA.
pData:
A pointer to a memory buffer to store the data which will be written to FPGA. dwDataSize:

Specify the byte number of data which will be written to FPGA.
Return Value:
Returns TRUE if write data is successful; otherwise FALSE is returned.

6.4 PCIe Fundamental Communication

The application reference design shows how to implement fundamental control and data transfer using PCIE0 port on the TR4. In the design, basic I/O is used to read or write the buttons and LEDs on the TR4. High-speed data transfer is performed by DMA. Both Memory-Mapped and FIFO memory types are demonstrated in the reference design. The demonstration also makes use of the associated PCIe adapter card.

■ Demonstration Files Location

The demo file is located in the folder: TR4_PCIe0_Fundamenta\demo_batch

The folder includes following files:

- PC Application Software: PCIe_Fundamental_Demo.exe
- FPGA Configuration File: tr4_pcie0_fundamental.sof
- PCIe Library : TERASIC_PCIE.DLL
- Demo Batch File : tr4_pcie0_fundamental.bat

Demonstration Setup

- Make sure TR4 and PC are both powered off.
- Plug the PCIe adapter card into PCIe slot on the PC motherboard.
- Use the PCIe cable to connect to the TR4 PCIE0 connector and PCIe adapter card as shown in Figure 6-12

Figure 6-12 PCle Fundamental Communication Demonstration Setup

- Power on your PC.
- After the Windows OS desktop shows up, Download the tr4_pcie0_fundamental.sof into the TR4 using the Quartus II Programmer.
- Restart Windows.
- Install PCIe driver if necessary. The driver is located in the folder PCIe_SDK\Driver.
- Launch the demo program PCIe_Fundamental_Demo.exe shown in Figure 6-13.

Figure 6-13 PCle Fundamental Demo GUI

- Make sure 'Select FPGA Board' appears as "VID=1172, DID=E001".
- Press BUTTON0~BUTTON3 on the TR4 and click 'Read Status' in the application software.
- Check/Uncheck the LED0-3 in this application software and click 'Set LED'. The LEDs on the TR4 should light and unlight accordingly.
- Click 'Memory-Mapped Write and Read' to test the memory -mapped DMA. A report dialog will appear when the DMA process is completed.
- Click 'FIFO Write and Read' to test the FIFO DMA. A report dialog box will appear when the DMA process is completed.
- The 'Custom Registers Group' is used to test custom design registers on the FPGA side. Users can use this function to verify custom register design.

Demonstration Setup

- Quartus II 11.1
- Demonstration Source Code Location
- Quartus Project: TR4_PCIe0_Fundamental
- Borland C++ Project: TR4_PCIe0_Fundamental \pc

- FPGA Application Design

The PCI Express demonstration uses the basic I/O interface and DMA channel on the Terasic PCIe IP to control I/O (Button/LED) and access two internal memories (RAM/FIFO) through the MUX block.

Figure 6-14 Hardware Block Diagram of the PCle Reference Design

- PC Application Design

The application shows how to call the TERASIC_PCIE.DLL exported to API. To enumerate all PCIe cards in system call, the software design defines some constants based on FPGA design shown below:

\#define PCIE_VID	0×1172
\#define PCIE_DID	$0 \times E 001$
\#define DEMO_PCIE_USER_BAR	PCIE_BAR1
\#define DEMO_PCIE_IO_ADDR	0×04
\#define DEMO_PCIE_FIFO_ID	0×00

The vendor ID is defined as 0×1172 and the device ID is defined as 0×0001. The BUTTON/LED register address is 0×04 based on PCIE_BAR1.

A C++ class PCIE is designed to encapsulate the DLL dynamic loading for TERASIC_PCIE.DLL. A PCIE instance is created with the name m_hPCIE. To enumerate all PCIe cards in system, call the function

```
m_hPCIE.ScanCard(wVendorID, wDeviceID, &dwDeviceNum, m_szPcieInfo);
```

where w VendorID and wDeviceID are zeros. The return value dwDeviceNum represents the number of PCIe cards found in the system. The m_szPcieInfo array contains detailed information for each PCIe card.

To connect the selected PCIe card, the functions are called:

```
int nsel = ComboBoxBoard->ItemIndex;
WORD VID = m_szPcieInfo[nSel].VendorID;
WORD DID = m_szPcieInfo[nSel].DeviceID;
bSuccess = m_hPCIE.Open(VID,DID,0); //0: first matched board
```

where nSel is selected index in the 'Selected FPGA Board' poll-down menu. Based on the return m_szPcieInfo, we can find the associated PID and DID which can br used to specifiy the target PCIe card.

To read the BUTTON status, the function is called:

```
m_hPCIE.Read32(DEMO_PCIE_USER_BAR, DEMO_PCIE_IO_ADDR, &dwData);
```

To set LED status, the function is called:

```
hPCIE.Write32 (DEMO PCIE USER BAR, DEMO PCIE IO ADDR, dwData);
```

To write and read memory-mapped memory, call the functions:

```
// write
bSuccess = m_hPCIE.DmaWrite(LocalAddr, pWrite, nTestSize);
if (bSuccess) {
    // read
    bSuccess = m_hPCIE.DmaRead(LocalAddr, pRead, nTestSize);
}
```

To write and read FIFO memory, call the functions:

```
// write
bSuccess = m_hPCIE.DmaFifoWrite(FifoID, pWrite, nTestSize);
if (bSuccess) {
    // read
    bSuccess = m_hPCIE.DmaFifoRead(FifoID, pRead, nTestSize);
}
```


6.5 Image Processing Application

This example shows how to utilize computing power of the FPGA for image processing. The application demonstrates the 'invert' image processing by utilizing the FPGA. The PC and FPGA source code of the application layer are all available in the TR4 system CD, allowing users to easily extend the image process function based on this fundamental reference design.

In the demonstration, a memory-mapped memory is designed in the FPGA to work as an image frame buffer. The memory size is $320 \times 240 \times 3$ bytes with a starting address 0×00. The raw image is downloaded to and uploaded from the FPGA via DMA. The image process command and status is controlled by a register which can be accessed from the PC using basic I/O control. The register address is 0×10 under PCIE BAR1. Writing any value into this register will start the image process. The status of the image process is reported by a read from this register. The PCIe vendor ID and device ID is 0×1172 and $0 x E 001$, respectively. The block diagram of FPGA PCIe design is shown in Figure 6-15.

Figure 6-15 Block Diagram of Image Processing Reference Design

- Demonstration Files Location

The demo file is located in the folder: TR4_PCIe0_imageprocess\demo_batch

The folder includes the following files:

- PC Application Software: PCIe_Image_Demo.exe
- FPGA Configuration File: TR4_PCIe0_imageprocess.sof
- PCIe Library : TERASIC_PCIE.DLL
- Demo Batch File : TR4_PCIe0_imageprocess.bat

Demonstration Setup

- Make sure TR4 and PC are powered off.
- Plug the PCIe adapter card into PCIe slot on the PC.
- Use the PCIe cable to connect the TR4 PCIE0 connector and PCIe adapter card as shown in Figure 6-12
- Power on your PC.
- After the Windows OS desktop shows up, Download the TR4_PCIe0_Imageprocess.sof into the TR4 using the Quartus II Programmer.
- Restart Windows.
- Installed PCIe driver if necessary. The driver is located in the folder PCIe_SDK\Driver
- Launch demo program PCIe_Image_Demo.exe

Figure 6-16 PCle Image Demo GUI

- Click "Select Image" to select a bitmap or jpeg file for image processing.

Figure 6-17 PCle Image Demo Selected Image

- Click "Download Image" to download image raw data into the local memory of FPGA.
- Click "Process Image" to trigger the 'invert' image process.
- Click "Upload Image" to upload an image to PC from local memory of FPGA to be displayed on the window demo application.

Figure 6-18 PCle Image Demo Inverted Image

- Design Tools
- Quartus II 11.1
- Demonstration Source Code Location
- Quartus Project: TR4_PCIe0_imageprocess
- Borland C++ Project: TR4_PCIe0_imageprocess \pc

- FPGA Application Design

This demonstration uses the DMA channel of PCIe IP to download/upload the image into the internal RAM of FPGA, and controls the user register that switches the function which inverts the image data from the internal RAM.

- PC Application Design

The software design defines some constant based on the FPGA design as shown below:

```
#define PCIE_VID 0x1172
#define PCIE_DID OxEOO1
#define IMAGE_WIDTH 320
#define IMAGE_HEIGH 240
#define DEMO_PCIE_USER_BAR PCIE_BAR1
#define DEMO_IMAGE_REG_ADDR 0x10
#define DEMO_IMAGE_DATA_ADDR 0
```

The vendor ID is defined as 0×1172 and the device ID is defined as $0 x E 001$. The image dimension is defined as 320×240. The register address is 0×10 and memory address is 0×00.

A C++ class PCIE is designed to encapsulate the DLL dynamic loading for TERASIC_PCIE.DLL. A PCIE instance is created with the name m_hPCIE. To open a connection with FPGA the function is called:

```
m_hPCIE.Open(PCIE_VID,PCIE_DID,0); //O: first matched board
```

To download the raw image from PC to FPGA memory, the function is called:

```
m_hPCIE.DmaWrite(DEMO_IMAGE_DATA_ADDR, pImage, nImageSize);
```

where pImage is a pointer of the image raw data, and the nImageSize specifies the image size. In this reference design, nImageSize $=320 \times 240 \times 3$ bytes .

To start the image process, the function is called:

```
m_hPCIE.Write32(DEMO_PCIE_USER_BAR, DEMO_IMAGE_REG_ADDR, 1);
```

The image process is started whenever the register is written with any value.

To check whether the image process is finished, the control register is monitored by calling the function:

```
m_hPCIE.Read32(DEMO_PCIE_USER_BAR, DEMO_IMAGE_REG_ADDR, &dwStatus);
```

When the image process is finished, the value of dwStatus becomes zero.

To update the processed image from FPGA memory to PC, the function is called:

```
m_hPCIE.DmaRead(DEMO_IMAGE_DATA_ADDR, pImage, nImageSize);
```


Chapter 7

Appendix A. HSMC Pin

Assignment

Table 7-1 HSMC Port A Pin Assignments, Schematic Signal Names, and Functions

Board Reference (J6)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
1	HSMA_GXB_TX_p7	Transceiver TX bit 7	1.4-V PCML	B4
2	HSMA_GXB_RX_p7	Transceiver RX bit 7	1.4-V PCML	C2
3	HSMA_GXB_TX_n7	Transceiver TX bit 7n	1.4-V PCML	B3
4	HSMA_GXB_RX_n7	Transceiver RX bit 7n	1.4-V PCML	C1
5	HSMA_GXB_TX_p6	Transceiver TX bit 6	1.4-V PCML	D4
6	HSMA_GXB_RX_p6	Transceiver TX bit 6	1.4-V PCML	E2
7	HSMA_GXB_TX_n6	Transceiver TX bit 6n	1.4-V PCML	D3
8	HSMA_GXB_RX_n6	Transceiver RX bit 6n	1.4-V PCML	E1
9	HSMA_GXB_TX_p5	Transceiver TX bit 5	1.4-V PCML	K4
10	HSMA_GXB_RX_p5	Transceiver RX bit 5	1.4-V PCML	L2
11	HSMA_GXB_TX_n5	Transceiver RX bit 5n	1.4-V PCML	K3
12	HSMA_GXB_RX_n5	Transceiver RX bit 5n	1.4-V PCML	L1
13	HSMA_GXB_TX_p4	Transceiver TX bit 4	1.4-V PCML	M4
14	HSMA_GXB_RX_p4	Transceiver RX bit 4	1.4-V PCML	N2
15	HSMA_GXB_TX_n4	Transceiver TX bit 4n	1.4-V PCML	M3
16	HSMA_GXB_RX_n4	Transceiver RX bit 4n	1.4-V PCML	N1
17	HSMA_GXB_TX_p3	Transceiver TX bit 3	1.4-V PCML	P4
18	HSMA_GXB_RX_p3	Transceiver TX bit 3	1.4-V PCML	R2
19	HSMA_GXB_TX_n3	Transceiver TX bit 3n	1.4-V PCML	P3
20	HSMA_GXB_RX_n3	Transceiver RX bit 3n	1.4-V PCML	R1
21	HSMA_GXB_TX_p2	Transceiver TX bit 2	1.4-V PCML	T4
22	HSMA_GXB_RX_p2	Transceiver RX bit 2	1.4-V PCML	U2
23	HSMA_GXB_TX_n2	Transceiver RX bit 2n	1.4-V PCML	T3
24	HSMA_GXB_RX_n2	Transceiver RX bit 2n	1.4-V PCML	U1
25	HSMA_GXB_TX_p1	Transceiver TX bit 1	1.4-V PCML	AB4
26	HSMA_GXB_RX_p1	Transceiver RX bit 1	1.4-V PCML	AC2

27	HSMA_GXB_TX_n1	Transceiver TX bit 1n	1.4-V PCML	AB3
28	HSMA_GXB_RX_n1	Transceiver RX bit 1n	1.4-V PCML	AC1
29	HSMA_GXB_TX_p0	Transceiver TX bit 0	1.4-V PCML	AD4
30	HSMA_GXB_RX_p0	Transceiver TX bit 0	1.4-V PCML	AE2
31	HSMA_GXB_TX_n0	Transceiver TX bit On	1.4-V PCML	AD3
32	HSMA_GXB_RX_n0	Transceiver RX bit On	1.4-V PCML	AE1
39	HSMA_OUTO	Dedicated clock output	LVDS or 2.5-V	D10
40	HSMA_CLKINO	Dedicated clock input	LVDS or $2.5-\mathrm{V}$	C10
41	HSMA_D0	LVDS TX or CMOS I/O	LVDS or 2.5-V	AK8
42	HSMA_D1	LVDS RX or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AP6
43	HSMA_D2	LVDS TX or CMOS I/O	LVDS or 2.5-V	AK7
44	HSMA_D3	LVDS RX or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AP5
47	HSMA_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG10
48	HSMA_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN6
49	HSMA_TX_n0	LVDS TX bit On or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG9
50	HSMA_RX_n0	LVDS RX bit On or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN5
53	HSMA_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH9
54	HSMA_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or 2.5-V	AM6
55	HSMA_TX_n1	LVDS TX bit 1n or CMOS I/O	LVDS or 2.5-V	AH8
56	HSMA_RX_n1	LVDS RX bit 1n or CMOS I/O	LVDS or 2.5-V	AM5
59	HSMA_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG8
60	HSMA_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or 2.5-V	AL6
61	HSMA_TX_n2	LVDS TX bit 2n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG7
62	HSMA_RX_n2	LVDS RX bit 2 n or CMOS I/O	LVDS or 2.5-V	AL5
65	HSMA_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AF11
66	HSMA_RX_p3	LVDS RX bit 3 or CMOS I/O	LVDS or 2.5-V	AK6
67	HSMA_TX_n3	LVDS TX bit 3n or CMOS I/O	LVDS or 2.5-V	AF10
68	HSMA_RX_n3	LVDS RX bit 3n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AK5
71	HSMA_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AD10
72	HSMA_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or 2.5-V	AJ6
73	HSMA_TX_n4	LVDS TX bit 4n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AD9
74	HSMA_RX_n4	LVDS RX bit 4n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AJ5
77	HSMA_TX_p5	LVDS TX bit 5 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AB13
78	HSMA_RX_p5	LVDS RX bit 5 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH6
79	HSMA_TX_n5	LVDS TX bit 5n or CMOS I/O	LVDS or 2.5-V	AB12
80	HSMA_RX_n5	LVDS RX bit 5n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH5
83	HSMA_TX_p6	LVDS TX bit 6 or CMOS I/O	LVDS or 2.5-V	AB11
84	HSMA_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or 2.5-V	AG6
85	HSMA_TX_n6	LVDS TX bit 6n or CMOS I/O	LVDS or 2.5-V	AB10
86	HSMA_RX_n6	LVDS RX bit 6n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG5
89	HSMA_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	T13
90	HSMA_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AB9
91	HSMA_TX_n7	LVDS TX bit 7n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	T12
92	HSMA_RX_n7	LVDS RX bit 7n or CMOS I/O	LVDS or 2.5-V	AC8

95	HSMA_CLKOUT_p1	LVDS TX or CMOS I/O	LVDS or 2.5-V	R12
96	HSMA_CLKIN_p1	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	AF6
97	HSMA_CLKOUT_n1	LVDS RX or CMOS I/O	LVDS or 2.5-V	R11
98	HSMA_CLKIN_n1	LVDS RX or CMOS I/O or differential clock input	LVDS or $2.5-\mathrm{V}$	AE5
101	HSMA_TX_p8	LVDS TX bit 8 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	R13
102	HSMA_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	F10
103	HSMA_TX_n8	LVDS TX bit 8 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	P13
104	HSMA_RX_n8	LVDS RX bit 8n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	E10
107	HSMA_TX_p9	LVDS TX bit 9 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	N11
108	HSMA_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or 2.5-V	G9
109	HSMA_TX_n9	LVDS TX bit 9n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	N10
110	HSMA_RX_n9	LVDS RX bit 9n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	F9
113	HSMA_TX_p10	LVDS TX bit 10 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	N12
114	HSMA_RX_p10	LVDS RX bit 10 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	D9
115	HSMA_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	M12
116	HSMA_RX_n10	LVDS RX bit 10n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	C9
119	HSMA_TX_p11	LVDS TX bit 11 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	M10
120	HSMA_RX_p11	LVDS RX bit 11 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	G6
121	HSMA_TX_n11	LVDS TX bit 11n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	L10
122	HSMA_RX_n11	LVDS RX bit 11n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	F6
125	HSMA_TX_p12	LVDS TX bit 12 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	M11
126	HSMA_RX_p12	LVDS RX bit 12 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	G5
127	HSMA_TX_n12	LVDS TX bit 12n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	L11
128	HSMA_RX_n12	LVDS RX bit 12n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	F5
131	HSMA_TX_p13	LVDS TX bit 13 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	K8
132	HSMA_RX_p13	LVDS RX bit 13 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	F7
133	HSMA_TX_n13	LVDS TX bit 13n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	J8
134	HSMA_RX_n13	LVDS RX bit 13n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	E7
137	HSMA_TX_p14	LVDS TX bit 14 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	K9
138	HSMA_RX_p14	LVDS RX bit 14 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	D8
139	HSMA_TX_n14	LVDS TX bit 14n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	J9
140	HSMA_RX_n14	LVDS RX bit 14n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	C8
143	HSMA_TX_p15	LVDS TX bit 15 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	H7
144	HSMA_RX_p15	LVDS RX bit 15 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	D5
145	HSMA_TX_n15	LVDS TX bit 15n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	G7
146	HSMA_RX_n15	LVDS RX bit 15n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	C5
149	HSMA_TX_p16	LVDS TX bit 16 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	K10
150	HSMA_RX_p16	LVDS RX bit 16 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	D7
151	HSMA_TX_n16	LVDS TX bit 16n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	J10
152	HSMA_RX_n16	LVDS RX bit 16n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	C7
155	HSMA_OUT_p2	LVDS TX or CMOS I/O or differential clock input/output	LVDS or 2.5-V	H10

156	HSMA_CLKIN_p2	LVDS RX or CMOS I/O or differential clock input/output	LVDS or 2.5-V	AC6
157	HSMA_OUT_n2	LVDS TX or CMOS I/O or differential clock input/output	LVDS or 2.5-V	G10
158	HSMA_CLKIN_n2	LVDS RX or CMOS I/O or differential clock input/output	LVDS or 2.5-V	AC5

Table 7-2 HSMC Port B Pin Assignments, Schematic Signal Names, and Functions

Board Reference (J14)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
39	HSMB_OUTO	CMOS I/O	LVDS or 2.5-V	AN15
40	HSMB_CLKINO	Dedicated clock input	LVDS or 2.5-V	AP15
41	HSMB_D0	LVDS TX or CMOS I/O	LVDS or 2.5-V	AD15
42	HSMB_D1	LVDS RX or CMOS I/O	LVDS or 2.5-V	AV13
43	HSMB_D2	LVDS TX or CMOS I/O	LVDS or 2.5-V	AE15
44	HSMB_D3	LVDS RX or CMOS I/O	LVDS or 2.5-V	AW13
47	HSMB_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN13
48	HSMB_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV10
49	HSMB_TX_n0	LVDS TX bit On or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AL15
50	HSMB_RX_n0	LVDS RX bit On or CMOS I/O	LVDS or 2.5-V	AW10
53	HSMB_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT14
54	HSMB_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT9
55	HSMB_TX_n1	LVDS TX bit 1n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU14
56	HSMB_RX_n1	LVDS RX bit 1n or CMOS I/O	LVDS or 2.5-V	AU9
59	HSMB_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW12
60	HSMB_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV7
61	HSMB_TX_n2	LVDS TX bit 2n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW11
62	HSMB_RX_n2	LVDS RX bit 2 n or CMOS I/O	LVDS or 2.5-V	AW7
65	HSMB_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AL14
66	HSMB_RX_p3	LVDS RX bit 3 or CMOS I/O	LVDS or 2.5-V	AW6
67	HSMB_TX_n3	LVDS TX bit 3n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AM14
68	HSMB_RX_n3	LVDS RX bit 3n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW5
71	HSMB_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT12
72	HSMB_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV5
73	HSMB_TX_n4	LVDS TX bit 4n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU12
74	HSMB_RX_n4	LVDS RX bit 4n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW4
77	HSMB_TX_p5	LVDS TX bit 5 or CMOS I/O	LVDS or 2.5-V	AP13
78	HSMB_RX_p5	LVDS RX bit 5 or CMOS I/O	LVDS or 2.5-V	AV8
79	HSMB_TX_n5	LVDS TX bit 5n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN14
80	HSMB_RX_n5	LVDS RX bit 5 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW8
83	HSMB_TX_p6	LVDS TX bit 6 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG14
84	HSMB_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or 2.5-V	AR5
85	HSMB_TX_n6	LVDS TX bit 6 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG15
86	HSMB_RX_n6	LVDS RX bit 6n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT5
89	HSMB_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN9
90	HSMB_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or 2.5-V	AT6
91	HSMB_TX_n7	LVDS TX bit 7n or CMOS I/O	LVDS or 2.5-V	AP9
92	HSMB_RX_n7	LVDS RX bit 7n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU6
95	HSMB_CLKOUT_p1	LVDS TX or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN10
96	HSMB_CLKIN_p1	LVDS RX or CMOS I/O differential clock input	LVDS or 2.5-V	AT7

97	HSMB_CLKOUT_n1	LVDS TX or CMOS I/O	LVDS or 2.5-V	AP10
98	HSMB_CLKIN_n1	LVDS RX or CMOS I/O or differential clock input	VDS or 2.5-V	AU7
101	HSMB_TX_p8	LVDS TX bit 8 or CMOS I/O	LVDS or 2.5-V	AL8
102	HSMB_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or 2.5-V	AP8
103	HSMB_TX_n8	LVDS TX bit 8n or CMOS I/O	LVDS or 2.5-V	AM8
104	HSMB_RX_n8	LVDS RX bit 8n or CMOS I/O	LVDS or 2.5-V	AR8
107	HSMB_TX_p9	LVDS TX bit 9 or CMOS I/O	LVDS or 2.5-V	AK9
108	HSMB_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or 2.5-V	AT8
109	HSMB_TX_n9	LVDS TX bit 9n or CMOS I/O	LVDS or 2.5-V	AL9
110	HSMB_RX_n9	LVDS RX bit 9n or CMOS I/O	LVDS or 2.5-V	AU8
113	HSMB_TX_p10	LVDS TX bit 10 or CMOS I/O	LVDS or 2.5-V	AL10
114	HSMB_RX_p10	LVDS RX bit 10 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT10
115	HSMB_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or 2.5-V	AM10
116	HSMB_RX_n10	LVDS RX bit 10n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU10
119	HSMB_TX_p11	LVDS TX bit 11 or CMOS I/O	LVDS or 2.5-V	AH11
120	HSMB_RX_p11	LVDS RX bit 11 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU11
121	HSMB_TX_n11	LVDS TX bit 11n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AJ11
122	HSMB_RX_n11	LVDS RX bit 11n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV11
125	HSMB_TX_p12	LVDS TX bit 12 or CMOS I/O	LVDS or 2.5-V	AG12
126	HSMB_RX_p12	LVDS RX bit 12 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AR13
127	HSMB_TX_n12	LVDS TX bit 12n or CMOS I/O	LVDS or 2.5-V	AH12
128	HSMB_RX_n12	LVDS RX bit 12n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT13
131	HSMB_TX_p13	LVDS TX bit 13 or CMOS I/O	LVDS or 2.5-V	AE13
132	HSMB_RX_p13	LVDS RX bit 13 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AJ13
133	HSMB_TX_n13	LVDS TX bit 13n or CMOS I/O	LVDS or 2.5-V	AE12
134	HSMB_RX_n 13	LVDS RX bit 13n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AK13
137	HSMB_TX_p14	LVDS TX bit 14 or CMOS I/O	LVDS or 2.5-V	AF13
138	HSMB_RX_p14	LVDS RX bit 14 or CMOS I/O	LVDS or 2.5-V	AH14
139	HSMB_TX_n14	LVDS TX bit 14n or CMOS I/O	LVDS or 2.5-V	AG13
140	HSMB_RX_n 14	LVDS RX bit 14 n or CMOS I/O	LVDS or 2.5-V	AJ14
143	HSMB_TX_p15	LVDS TX bit 15 or CMOS I/O	LVDS or 2.5-V	AD13
144	HSMB_RX_p15	LVDS RX bit 15 or CMOS I/O	LVDS or 2.5-V	AE14
145	HSMB_TX_n15	LVDS TX bit 15n or CMOS I/O	LVDS or 2.5-V	AD12
146	HSMB_RX_n15	LVDS RX bit 15n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AF14
149	HSMB_TX_p16	LVDS TX bit 16 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN7
150	HSMB_RX_p16	LVDS RX bit 16 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AL13
151	HSMB_TX_n16	LVDS TX bit 16n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AP7
152	HSMB_RX_n16	LVDS RX bit 16n or CMOS I/O	LVDS or 2.5-V	AM13
155	HSMB_OUT_p2	LVDS TX or CMOS I/O or differential clock input	LVDS or $2.5-\mathrm{V}$	AH10
156	HSMB_CLKIN_p2	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	AV14
157	HSMB_OUT_n2	LVDS TX or CMOS I/O or	LVDS or 2.5-V	AJ10

		differential clock input		
158	HSMB_CLKIN_n2	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	AW14

Table 7-3 HSMC Port C Pin Assignments, Schematic Signal Names, and Functions

Board Referenct (J15)	Schematic Signal Name	Description	//O Standard	Stratix IV GX Pin Number
39	HSMC_OUT0	CMOS I/O	LVDS or 2.5-V	AT27
40	HSMC_CLKINO	Dedicated clock input	LVDS or $2.5-\mathrm{V}$	AU27
41	HSMC_D0	LVDS TX or CMOS I/O	LVDS or 2.5-V	AB27
42	HSMC_D1	LVDS RX or CMOS I/O	LVDS or 2.5-V	AJ25
43	HSMC_D2	LVDS TX or CMOS I/O	LVDS or 2.5-V	AB28
44	HSMC_D3	LVDS RX or CMOS I/O	LVDS or 2.5-V	AK25
47	HSMC_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AC28
48	HSMC_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AM26
49	HSMC_TX_n0	LVDS TX bit On or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN26
50	HSMC_RX_n0	LVDS RX bit On or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AC29
53	HSMC_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AD28
54	HSMC_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AP28
55	HSMC_TX_n1	LVDS TX bit 1 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AD29
56	HSMC_RX_n1	LVDS RX bit 1n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AR28
59	HSMC_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AE28
60	HSMC_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT28
61	HSMC_TX_n2	LVDS TX bit 2 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AE29
62	HSMC_RX_n2	LVDS RX bit 2 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU28
65	HSMC_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AF29
66	HSMC_RX_p3	LVDS RX bit 3 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV28
67	HSMC_TX_n3	LVDS TX bit 3n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG30
68	HSMC_RX_n3	LVDS RX bit 3n or CMOS I/O	LVDS or 2.5-V	AW29
71	HSMC_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AE30
72	HSMC_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV29
73	HSMC_TX_n4	LVDS TX bit 4n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AE31
74	HSMC_RX_n4	LVDS RX bit 4n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW30
77	HSMC_TX_p5	LVDS TX bit 5 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG31
78	HSMC_RX_p5	LVDS RX bit 5 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AV32
79	HSMC_TX_n5	LVDS TX bit 5n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG32
80	HSMC_RX_n5	LVDS RX bit 5 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW32
83	HSMC_TX_p6	LVDS TX bit 6 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AD30
84	HSMC_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AJ26
85	HSMC_TX_n6	LVDS TX bit 6 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AD31
86	HSMC_RX_n6	LVDS RX bit 6 n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AK26
89	HSMC_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or 2.5-V	AB30

90	HSMC_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or 2.5-V	AF25
91	HSMC_TX_n7	LVDS TX bit 7n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AB31
92	HSMC_RX_n7	LVDS RX bit 7n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG25
95	HSMC_CLKOUT_p1	LVDS TX or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG34
96	HSMC_CLKIN_p1	LVDS RX or CMOS I/O or differential clock input	LVDS or $2.5-\mathrm{V}$	AF34
97	HSMC_CLKOUT_n1	LVDS RX or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG35
98	HSMC_CLKIN_n1	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	AE35
101	HSMC_TX_p8	LVDS TX bit 8 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AL27
102	HSMC_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AJ32
103	HSMC_TX_n8	LVDS TX bit 8n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH26
104	HSMC_RX_n8	LVDS RX bit 8n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AK33
107	HSMC_TX_p9	LVDS TX bit 9 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AK27
108	HSMC_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN34
109	HSMC_TX_n9	LVDS TX bit 9n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AE24
110	HSMC_RX_n9	LVDS RX bit 9n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN35
113	HSMC_TX_p10	LVDS TX bit 10 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW27
114	HSMC_RX_p10	LVDS RX bit 10 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AM34
115	HSMC_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW28
116	HSMC_RX_n10	LVDS RX bit 10n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AM35
119	HSMC_TX_p11	LVDS TX bit 11 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH24
120	HSMC_RX_p11	LVDS RX bit 11 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AL34
121	HSMC_TX_n11	LVDS TX bit 11n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AG24
122	HSMC_RX_n11	LVDS RX bit 11n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AL35
125	HSMC_TX_p12	LVDS TX bit 12 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW31
126	HSMC_RX_p12	LVDS RX bit 12 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AK34
127	HSMC_TX_n12	LVDS TX bit 12 n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AV31
128	HSMC_RX_n12	LVDS RX bit 12n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AK35
131	HSMC_TX_p13	LVDS TX bit 13 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AW33
132	HSMC_RX_p13	LVDS RX bit 13 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AJ34
133	HSMC_TX_n13	LVDS TX bit 13n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AW34
134	HSMC_RX_n13	LVDS RX bit 13n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AJ35
137	HSMC_TX_p14	LVDS TX bit 14 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AL25
138	HSMC_RX_p14	LVDS RX bit 14 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH34
139	HSMC_TX_n14	LVDS TX bit 14n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AP26
140	HSMC_RX_n14	LVDS RX bit 14n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AH35
143	HSMC_TX_p15	LVDS TX bit 15 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AU29
144	HSMC_RX_p15	LVDS RX bit 15 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AH32
145	HSMC_TX_n15	LVDS TX bit 15n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AT29
146	HSMC_RX_n15	LVDS RX bit 15 n or CMOS I/OL	LVDS or $2.5-\mathrm{V}$	AH33
149	HSMC_TX_p16	LVDS TX bit 16 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AP27
150	HSMC_RX_p16	LVDS RX bit 16 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AC31
151	HSMC_TX_n16	LVDS TX bit 16n or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AN27

152	HSMC_RX_n16	LVDS RX bit 16n or CMOS I/OLVDS or 2.5-V	AC32		
155	HSMC_OUT_p2	LVDS TX or CMOS I/O or differential clockLVDS or 2.5-V input/output	AE25		
156	HSMC_CLKIN_p2	LVDS RX or CMOS I/O or differential clock input			
157	HSMC_OUT_n2 or 2.5-V	LVDS TX or CMOS I/O or differential input/output			
158	HSMC_CLKIN_n2	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	AC35	AD25
:---					

Table 7-4 HSMC Port D Pin Assignments, Schematic Signal Names, and Functions

Board Referenct (J7)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
39	HSMD_OUTO	CMOS I/O	LVDS or 2.5-V	P19
40	HSMD_CLKINO	Dedicated clock input	LVDS or 2.5-V	AA35
41	HSMD_D0	LVDS TX or CMOS I/O	LVDS or 2.5-V	AJ29
42	HSMD_D1	LVDS RX or CMOS I/O	LVDS or 2.5-V	AR31
43	HSMD_D2	LVDS TX or CMOS I/O	LVDS or 2.5-V	AK29
44	HSMD_D3	LVDS RX or CMOS I/O	LVDS or 2.5-V	AT30
47	HSMD_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or 2.5-V	AL29
48	HSMD_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or 2.5-V	AT31
49	HSMD_TX_n0	LVDS TX bit On or CMOS I/O	LVDS or 2.5-V	AM29
50	HSMD_RX_n0	LVDS RX bit On or CMOS I/O	LVDS or 2.5-V	AU31
53	HSMD_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or 2.5-V	AK30
54	HSMD_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or 2.5-V	AT32
55	HSMD_TX_n1	LVDS TX bit 1n or CMOS I/O	LVDS or 2.5-V	AL30
56	HSMD_RX_n1	LVDS RX bit 1n or CMOS I/O	LVDS or 2.5-V	AU32
59	HSMD_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or 2.5-V	AK32
60	HSMD_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or 2.5-V	AT33
61	HSMD_TX_n2	LVDS TX bit 2n or CMOS I/O	LVDS or 2.5-V	AL32
62	HSMD_RX_n2	LVDS RX bit 2 n or CMOS I/O	LVDS or 2.5-V	AU33
65	HSMD_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or 2.5-V	AJ31
66	HSMD_RX_p3	LVDS RX bit 3 or CMOS I/O	LVDS or 2.5-V	AU34
67	HSMD_TX_n3	LVDS TX bit 3n or CMOS I/O	LVDS or 2.5-V	AH30
68	HSMD_RX_n3	LVDS RX bit 3n or CMOS I/O	LVDS or 2.5-V	AV34
71	HSMD_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or 2.5-V	AG27
72	HSMD_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or 2.5-V	AN33
73	HSMD_TX_n4	LVDS TX bit 4n or CMOS I/O	LVDS or 2.5-V	AH27
74	HSMD_RX_n4	LVDS RX bit 4n or CMOS I/O	LVDS or 2.5-V	AP34
77	HSMD_TX_p5	LVDS TX bit 5 or CMOS I/O	LVDS or 2.5-V	AG29
78	HSMD_RX_p5	LVDS RX bit 5 or CMOS I/O	LVDS or 2.5-V	AT34

Terasic TR4 User Manual

79	HSMD_TX_n5	LVDS TX bit 5n or CMOS I/O	LVDS or 2.5-V	AH29
80	HSMD_RX_n5	LVDS RX bit 5n or CMOS I/O	LVDS or 2.5-V	AR34
83	HSMD_TX_p6	LVDS TX bit 6 or CMOS I/O	LVDS or 2.5-V	AG28
84	HSMD_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or 2.5-V	AP35
85	HSMD_TX_n6	LVDS TX bit 6n or CMOS I/O	LVDS or 2.5-V	AH28
86	HSMD_RX_n6	LVDS RX bit 6n or CMOS I/O	LVDS or 2.5-V	AR35
89	HSMD_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or 2.5-V	AD27
90	HSMD_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or 2.5-V	AN32
91	HSMD_TX_n7	LVDS TX bit 7n or CMOS I/O	LVDS or 2.5-V	AE27
92	HSMD_RX_n7	LVDS RX bit 7n or CMOS I/O	LVDS or 2.5-V	AP33
95	HSMD_CLKOUT_p1	LVDS TX or CMOS I/O	LVDS or 2.5-V	W32
96	HSMD_CLKIN_p1	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	W34
97	HSMD_CLKOUT_n1	LVDS RX or CMOS I/O	LVDS or 2.5-V	W33
98	HSMD_CLKIN_n1	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	W35
101	HSMD_TX_p8	LVDS TX bit 8 or CMOS I/O	LVDS or 2.5-V	AC26
102	HSMD_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or 2.5-V	AM31
103	HSMD_TX_n8	LVDS TX bit 8n or CMOS I/O	LVDS or 2.5-V	AD26
104	HSMD_RX_n8	LVDS RX bit 8n or CMOS I/O	LVDS or 2.5-V	AN31
107	HSMD_TX_p9	LVDS TX bit 9 or CMOS I/O	LVDS or 2.5-V	AE26
108	HSMD_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or 2.5-V	AN30
109	HSMD_TX_n9	LVDS TX bit 9n or CMOS I/O	LVDS or 2.5-V	AF26
110	HSMD_RX_n9	LVDS RX bit 9n or CMOS I/O	LVDS or 2.5-V	AP30
113	HSMD_TX_p10	LVDS TX bit 10 or CMOS I/O	LVDS or 2.5-V	V29
114	HSMD_RX_p10	LVDS RX bit 10 or CMOS I/O	LVDS or 2.5-V	AP32
115	HSMD_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or 2.5-V	V30
116	HSMD_RX_n10	LVDS RX bit 10n or CMOS I/OLV	LVDS or 2.5-V	AR32
119	HSMD_TX_p11	LVDS TX bit 11 or CMOS I/O	LVDS or 2.5-V	W28
120	HSMD_RX_p11	LVDS RX bit 11 or CMOS I/O	LVDS or 2.5-V	V34
121	HSMD_TX_n11	LVDS TX bit 11n or CMOS I/O LV	LVDS or 2.5-V	V28
122	HSMD_RX_n11	LVDS RX bit 11n or CMOS I/O LV	LVDS or 2.5-V	U35
125	HSMD_TX_p12	LVDS TX bit 12 or CMOS I/O	LVDS or 2.5-V	T30
126	HSMD_RX_p12	LVDS RX bit 12 or CMOS I/O	LVDS or 2.5-V	U31
127	HSMD_TX_n12	LVDS TX bit 12n or CMOS I/O LV	LVDS or 2.5-V	T31
128	HSMD_RX_n12	LVDS RX bit 12n or CMOS I/OL	LVDS or 2.5-V	V31
131	HSMD_TX_p13	LVDS TX bit 13 or CMOS I/O	LVDS or 2.5-V	R32
132	HSMD_RX_p13	LVDS RX bit 13 or CMOS I/O	LVDS or 2.5-V	N33
133	HSMD_TX_n13	LVDS TX bit 13n or CMOS I/O LV	LVDS or 2.5-V	R33
134	HSMD_RX_n13	LVDS RX bit 13n or CMOS I/OLV	LVDS or 2.5-V	N34
137	HSMD_TX_p14	LVDS TX bit 14 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	P31
138	HSMD_RX_p14	LVDS RX bit 14 or CMOS I/O	LVDS or 2.5-V	M33
139	HSMD_TX_n14	LVDS TX bit 14n or CMOS I/O LV	LVDS or 2.5-V	P32
140	HSMD_RX_n14	LVDS RX bit 14n or CMOS I/OLV	LVDS or 2.5-V	M34

143	HSMD_TX_p15	LVDS TX bit 15 or CMOS I/O	LVDS or 2.5-V	R30
144	HSMD_RX_p15	LVDS RX bit 15 or CMOS I/O	LVDS or 2.5-V	L34
145	HSMD_TX_n15	LVDS TX bit 15n or CMOS I/O LVDS or 2.5-V	R31	
146	HSMD_RX_n15	LVDS RX bit 15n or CMOS I/OLVDS or 2.5-V	L35	
149	HSMD_TX_p16	LVDS TX bit 16 or CMOS I/O	LVDS or 2.5-V	AK31
150	HSMD_RX_p16	LVDS RX bit 16 or CMOS I/O	LVDS or 2.5-V	K34
151	HSMD_TX_n16	LVDS TX bit 16n or CMOS I/O LVDS or 2.5-V	AL31	
152	HSMD_RX_n16	LVDS RX bit 16n or CMOS I/OLVDS or 2.5-V	K35	
155	LVDS TX or CMOS I/O or differential input/output	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	J34
156	HSMD_CLKIN_p2	LVDS TX or CMOS I/O or differential input/output	clockLVDS or 2.5-V	L32
157	HSMD_CLKIN_n2	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	J35
158				

Table 7-5 HSMC Port E Pin Assignments, Schematic Signal Names, and Functions

Board Referenct (J3)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
1	HSME_GXB_TX_p7	Transceiver TX bit 7	1.4-V PCML	B36
2	HSME_GXB_RX_p7	Transceiver RX bit 7	1.4-V PCML	C38
3	HSME_GXB_TX_n7	Transceiver TX bit 7n	1.4-V PCML	B37
4	HSME_GXB_RX_n7	Transceiver RX bit 7n	1.4-V PCML	C39
5	HSME_GXB_TX_p6	Transceiver TX bit 6	1.4-V PCML	D36
6	HSME_GXB_RX_p6	Transceiver TX bit 6	1.4-V PCML	E38
7	HSME_GXB_TX_n6	Transceiver TX bit 6n	1.4-V PCML	D37
8	HSME_GXB_RX_n6	Transceiver RX bit 6n	1.4-V PCML	E39
9	HSME_GXB_TX_p5	Transceiver TX bit 5	1.4-V PCML	K36
10	HSME_GXB_RX_p5	Transceiver RX bit 5	1.4-V PCML	L38
11	HSME_GXB_TX_n5	Transceiver RX bit 5n	1.4-V PCML	K37
12	HSME_GXB_RX_n5	Transceiver RX bit 5n	1.4-V PCML	L39
13	HSME_GXB_TX_p4	Transceiver TX bit 4	1.4-V PCML	M36
14	HSME_GXB_RX_p4	Transceiver RX bit 4	1.4-V PCML	N38
15	HSME_GXB_TX_n4	Transceiver TX bit 4n	1.4-V PCML	M37
16	HSME_GXB_RX_n4	Transceiver RX bit 4n	1.4-V PCML	N39
17	HSME_GXB_TX_p3	Transceiver TX bit 3	1.4-V PCML	P36
18	HSME_GXB_RX_p3	Transceiver TX bit 3	1.4-V PCML	R38
19	HSME_GXB_TX_n3	Transceiver TX bit 3n	1.4-V PCML	P37
20	HSME_GXB_RX_n3	Transceiver RX bit 3n	1.4-V PCML	R39
21	HSME_GXB_TX_p2	Transceiver TX bit 2	1.4-V PCML	T36

22	HSME_GXB_RX_p2	Transceiver RX bit 2	1.4-V PCML	U38
23	HSME_GXB_TX_n2	Transceiver RX bit 2n	1.4-V PCML	T37
24	HSME_GXB_RX_n2	Transceiver RX bit 2n	1.4-V PCML	U39
25	HSME_GXB_TX_p1	Transceiver TX bit 1	1.4-V PCML	AB36
26	HSME_GXB_RX_p1	Transceiver RX bit 1	1.4-V PCML	AC38
27	HSME_GXB_TX_n1	Transceiver TX bit 1n	1.4-V PCML	AB37
28	HSME_GXB_RX_n1	Transceiver RX bit 1n	1.4-V PCML	AC39
29	HSME_GXB_TX_p0	Transceiver TX bit 0	1.4-V PCML	AD36
30	HSME_GXB_RX_p0	Transceiver TX bit 0	1.4-V PCML	AE38
31	HSME_GXB_TX_n0	Transceiver TX bit On	1.4-V PCML	AD37
32	HSME_GXB_RX_n0	Transceiver RX bit On	1.4-V PCML	AE39
39	HSME_OUTO	CMOS I/O	LVDS or 2.5-V	C12
40	HSME_CLKINO	Dedicated clock input	LVDS or 2.5-V	C13
41	HSME_D0	LVDS TX or CMOS I/O	LVDS or 2.5-V	V12
42	HSME_D1	LVDS RX or CMOS I/O	LVDS or 2.5-V	W8
43	HSME_D2	LVDS TX or CMOS I/O	LVDS or 2.5-V	V11
44	HSME_D3	LVDS RX or CMOS I/O	LVDS or 2.5-V	W7
47	HSME_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or 2.5-V	V10
48	HSME_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or 2.5-V	V6
49	HSME_TX_n0	LVDS TX bit On or CMOS I/O	LVDS or 2.5-V	V9
50	HSME_RX_n0	LVDS RX bit On or CMOS I/O	LVDS or 2.5-V	U5
53	HSME_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or 2.5-V	T10
54	HSME_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or 2.5-V	R6
55	HSME_TX_n1	LVDS TX bit 1 n or CMOS I/O	LVDS or 2.5-V	R10
56	HSME_RX_n1	LVDS RX bit 1 n or CMOS I/O	LVDS or 2.5-V	R5
59	HSME_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or 2.5-V	U10
60	HSME_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or 2.5-V	R7
61	HSME_TX_n2	LVDS TX bit $2 n$ or CMOS I/O	LVDS or 2.5-V	T9
62	HSME_RX_n2	LVDS RX bit 2 n or CMOS I/O	LVDS or 2.5-V	P6
65	HSME_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or 2.5-V	R9
66	HSME_RX_p3	LVDS RX bit 3 or CMOS I/O	LVDS or 2.5-V	N6
67	HSME_TX_n3	LVDS TX bit $3 n$ or CMOS I/O	LVDS or $2.5-\mathrm{V}$	R8
68	HSME_RX_n3	LVDS RX bit $3 n$ or CMOS I/O	LVDS or 2.5-V	N5
71	HSME_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or 2.5-V	N9
72	HSME_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or 2.5-V	N8
73	HSME_TX_n4	LVDS TX bit $4 n$ or CMOS I/O	LVDS or $2.5-\mathrm{V}$	P8

74	HSME_RX_n4	LVDS RX bit $4 n$ or CMOS I/O	LVDS or 2.5-V	N7
77	HSME_TX_p5	LVDS TX bit 5 or CMOS I/O LV	LVDS or 2.5-V	M8
78	HSME_RX_p5	LVDS RX bit 5 or CMOS I/O LV	LVDS or 2.5-V	M6
79	HSME_TX_n5	LVDS TX bit $5 n$ or CMOS I/O	LVDS or 2.5-V	M7
80	HSME_RX_n5	LVDS RX bit $5 n$ or CMOS I/O	LVDS or 2.5-V	L5
83	HSME_TX_p6	LVDS TX bit 6 or CMOS I/O LV	LVDS or 2.5-V	L8
84	HSME_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or 2.5-V	K6
85	HSME_TX_n6	LVDS TX bit $6 n$ or CMOS I/O	LVDS or 2.5-V	L7
86	HSME_RX_n6	LVDS RX bit 6 n or CMOS I/O	LVDS or 2.5-V	K5
89	HSME_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or 2.5-V	K7
90	HSME_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or 2.5-V	J6
91	HSME_TX_n7	LVDS TX bit $7 n$ or CMOS I/O	LVDS or 2.5-V	J7
92	HSME_RX_n7	LVDS RX bit 7n or CMOS I/O	LVDS or 2.5-V	J5
95	HSME_CLKOUT_p1	LVDS TX or CMOS I/O	LVDS or 2.5-V	W12
96	HSME_CLKIN_p1	LVDS RX or CMOS I/O or differential clock input	LVDS or $2.5-\mathrm{V}$	W6
97	HSME_CLKOUT_n1	LVDS RX or CMOS I/O	LVDS or 2.5-V	W11
98	HSME_CLKIN_n1	LVDS RX or CMOS I/O or differential clock input	LVDS or $2.5-\mathrm{V}$	W5
101	HSME_TX_p8	LVDS TX bit 8 or CMOS I/O LV	LVDS or 2.5-V	N13
102	HSME_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or 2.5-V	P14
103	HSME_TX_n8	LVDS TX bit 8n or CMOS I/O	LVDS or 2.5-V	M13
104	HSME_RX_n8	LVDS RX bit 8n or CMOS I/O	LVDS or 2.5-V	N14
107	HSME_TX_p9	LVDS TX bit 9 or CMOS I/O LV	LVDS or 2.5-V	M14
108	HSME_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or 2.5-V	L13
109	HSME_TX_n9	LVDS TX bit 9n or CMOS I/O	LVDS or 2.5-V	K12
110	HSME_RX_n9	LVDS RX bit 9n or CMOS I/O	LVDS or 2.5-V	K13
113	HSME_TX_p10	LVDS TX bit 10 or CMOS I/OL	LVDS or 2.5-V	D11
114	HSME_RX_p10	LVDS RX bit 10 or CMOS I/O	LVDS or $2.5-\mathrm{V}$	L14
115	HSME_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or 2.5-V	B10
116	HSME_RX_n10	LVDS RX bit 10n or CMOS I/O	LVDS or 2.5-V	K14

119	HSME_TX_p11	LVDS TX bit 11 or CMOS I/OLVDS or 2.5-V	A10
120	HSME_RX_p11	LVDS RX bit 11 or CMOS I/O LVDS or $2.5-\mathrm{V}$	H13
121	HSME_TX_n11	LVDS TX bit 11 n or CMOS I/O LVDS or 2.5-V	C11
122	HSME_RX_n11	LVDS RX bit 11 n or CMOS I/O LVDS or $2.5-\mathrm{V}$	G13
125	HSME_TX_p12	LVDS TX bit 12 or CMOS I/OLVDS or 2.5-V	J12
126	HSME_RX_p12	LVDS RX bit 12 or CMOS I/O LVDS or $2.5-\mathrm{V}$	F13
127	HSME_TX_n12	LVDS TX bit $12 n$ or CMOS I/O LVDS or $2.5-\mathrm{V}$	J13
128	HSME_RX_n12	LVDS RX bit 12n or CMOS I/O LVDS or $2.5-\mathrm{V}$	E13
131	HSME_TX_p13	LVDS TX bit 13 or CMOS I/OLVDS or 2.5-V	F12
132	HSME_RX_p13	LVDS RX bit 13 or CMOS I/O LVDS or $2.5-\mathrm{V}$	B11
133	HSME_TX_n13	LVDS TX bit $13 n$ or CMOS I/O LVDS or $2.5-\mathrm{V}$	D13
134	HSME_RX_n13	LVDS RX bit $13 n$ or CMOS I/O LVDS or 2.5-V	A11
137	HSME_TX_p14	LVDS TX bit 14 or CMOS I/OLVDS or 2.5-V	B14
138	HSME_RX_p14	LVDS RX bit 14 or CMOS I/O LVDS or 2.5-V	F14
139	HSME_TX_n14	LVDS TX bit $14 n$ or CMOS I/O LVDS or 2.5-V	A14
140	HSME_RX_n14	LVDS RX bit $14 n$ or CMOS I/O LVDS or $2.5-\mathrm{V}$	E14
143	HSME_TX_p15	LVDS TX bit 15 or CMOS I/OLVDS or 2.5-V	H14
144	HSME_RX_p15	LVDS RX bit 15 or CMOS I/O LVDS or $2.5-\mathrm{V}$	B13
145	HSME_TX_n15	LVDS TX bit 15 n or CMOS I/O LVDS or 2.5-V	G14
146	HSME_RX_n15	LVDS RX bit 15 n or CMOS I/O LVDS or $2.5-\mathrm{V}$	A13
149	HSME_TX_p16	LVDS TX bit 16 or CMOS I/OLVDS or 2.5-V	K15
150	HSME_RX_p16	LVDS RX bit 16 or CMOS I/O LVDS or $2.5-\mathrm{V}$	D14
151	HSME_TX_n16	LVDS TX bit 16n or CMOS I/O LVDS or $2.5-\mathrm{V}$	J15
152	HSME_RX_n16	LVDS RX bit 16 n or CMOS I/O LVDS or 2.5-V	C14
155	HSME_OUT_p2	LVDS TX or CMOS I/O or differential input/outputclockLVDS or $2.5-\mathrm{V}$	R14
156	HSME_CLKIN_p2	LVDS RX or CMOS I/O orLVDS or 2.5-V	AB6

		differential clock input		
157	HSME_OUT_n2	LVDS TX or CMOS I/O or differential clock LVDS or 2.5-V input/output	N15	
158	HSME_CLKIN_n2	LVDS RX or CMOS I/O or differential clock input	LVDS or 2.5-V	AA5

Table 7-6 HSMC Port F Pin Assignments, Schematic Signal Names, and Functions

Board Reference (J16)	Schematic Signal Name	Description	I/O Standard	Stratix IV GX Pin Number
39	HSMF_OUTO	CMOS I/O	LVDS or 2.5-V	AP20
40	HSMF_CLKINO	Dedicated clock input	LVDS or 2.5-V	AV22
41	HSMF_D0	LVDS TX or CMOS I/O	LVDS or 2.5-V	AU25
42	HSMF_D1	LVDS RX or CMOS I/O	LVDS or 2.5-V	AV26
43	HSMF_D2	LVDS TX or CMOS I/O	LVDS or 2.5-V	AT25
44	HSMF_D3	LVDS RX or CMOS I/O	LVDS or 2.5-V	AW26
47	HSMF_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or 2.5-V	AV25
48	HSMF_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or 2.5-V	AT26
49	HSMF_TX_n0	LVDS TX bit $0 n$ or CMOS I/O	LVDS or 2.5-V	AW25
50	HSMF_RX_n0	LVDS RX bit On or CMOS I/O	LVDS or 2.5-V	AU26
53	HSMF_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or 2.5-V	AR25
54	HSMF_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or 2.5-V	AT24
55	HSMF_TX_n1	LVDS TX bit $1 n$ or CMOS I/O	LVDS or 2.5-V	AP25
56	HSMF_RX_n1	LVDS RX bit 1 n or CMOS I/O	LVDS or 2.5-V	AU24
59	HSMF_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or 2.5-V	AV23
60	HSMF_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or 2.5-V	AN24
61	HSMF_TX_n2	LVDS TX bit $2 n$ or CMOS I/O	LVDS or 2.5-V	AW23
62	HSMF_RX_n2	LVDS RX bit $2 n$ or CMOS I/O	LVDS or $2.5-\mathrm{V}$	AP24
65	HSMF_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or 2.5-V	AP23
66	HSMF_RX_p3	LVDS RX bit 3 or CMOSL	LVDS or 2.5-V	AT23

		I/O		
67	HSMF_TX_n3	LVDS TX bit $3 n$ or CMOS I/O	VDS or 2.5-V	AR23
68	HSMF_RX_n3	LVDS RX bit $3 n$ or CMOS I/O	LVDS or 2.5-V	AU23
71	HSMF_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or 2.5-V	AM23
72	HSMF_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or 2.5-V	AR20
73	HSMF_TX_n4	LVDS TX bit $4 n$ or CMOS I/O	LVDS or 2.5-V	AN23
74	HSMF_RX_n4	LVDS RX bit $4 n$ or CMOS I/O	LVDS or 2.5-V	AT20
77	HSMF_TX_p5	LVDS TX bit 5 or CMOS I/O	LVDS or 2.5-V	AN25
78	HSMF_RX_p5	LVDS RX bit 5 or CMOS I/O	LVDS or 2.5-V	AT22
79	HSMF_TX_n5	LVDS TX bit $5 n$ or CMOS I/O	LVDS or 2.5-V	AM25
80	HSMF_RX_n5	LVDS RX bit $5 n$ or CMOS I/O	LVDS or 2.5-V	AU22
83	HSMF_TX_p6	LVDS TX bit 6 or CMOS I/O	LVDS or 2.5-V	AL22
84	HSMF_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or 2.5-V	AU20
85	HSMF_TX_n6	LVDS TX bit $6 n$ or CMOS I/O	LVDS or 2.5-V	AL21
86	HSMF_RX_n6	LVDS RX bit $6 n$ or CMOS I/O	LVDS or 2.5-V	AV20
89	HSMF_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or 2.5-V	AR19
90	HSMF_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or 2.5-V	AT19
91	HSMF_TX_n7	LVDS TX bit $7 n$ or CMOS I/O	LVDS or 2.5-V	AP19
92	HSMF_RX_n7	LVDS RX bit $7 n$ or CMOS I/O	LVDS or 2.5-V	AU19
95	HSMF_CLKOUT_p1	LVDS TX or CMOS I/O	LVDS or 2.5-V	AN21
96	HSMF_CLKIN_p1	LVDS RX or CMOS I/O or differential clockL input	LVDS or 2.5-V	AW20
97	HSMF_CLKOUT_n1	LVDS RX or CMOS I/O	LVDS or 2.5-V	AP21
98	HSMF_CLKIN_n1	LVDS RX or CMOS I/O or differential clockL input	LVDS or 2.5-V	AW21
101	HSMF_TX_p8	LVDS TX bit 8 or CMOSL	LVDS or 2.5-V	AT17

		I/O		
102	HSMF_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or 2.5-V	AT18
103	HSMF_TX_n8	LVDS TX bit $8 n$ or CMOS I/O	LVDS or 2.5-V	AW18
104	HSMF_RX_n8	LVDS RX bit $8 n$ or CMOS I/O	VDS or 2.5-V	AU18
107	HSMF_TX_p9	LVDS TX bit 9 or CMOS I/O	LVDS or 2.5-V	AN19
108	HSMF_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or 2.5-V	AU17
109	HSMF_TX_n9	LVDS TX bit $9 n$ or CMOS I/O	LVDS or 2.5-V	AM19
110	HSMF_RX_n9	LVDS RX bit $9 n$ or CMOS I/O	LVDS or 2.5-V	AV17
113	HSMF_TX_p10	LVDS TX bit 10 or CMOS I/O	LVDS or 2.5-V	AJ22
114	HSMF_RX_p10	LVDS RX bit 10 or CMOS I/O	VDS or 2.5-V	AM22
115	HSMF_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or 2.5-V	AK24
116	HSMF_RX_n10	LVDS RX bit 10n or CMOS I/O	LVDS or 2.5-V	AN22
119	HSMF_TX_p11	LVDS TX bit 11 or CMOS I/O	LVDS or 2.5-V	AE23
120	HSMF_RX_p11	LVDS RX bit 11 or CMOS I/O	LVDS or 2.5-V	AN18
121	HSMF_TX_n11	LVDS TX bit 11n or CMOS I/O	LVDS or 2.5-V	AH22
122	HSMF_RX_n11	LVDS RX bit 11n or CMOS I/O	LVDS or 2.5-V	AP18
125	HSMF_TX_p12	LVDS TX bit 12 or CMOS I/O	LVDS or 2.5-V	AF23
126	HSMF_RX_p12	LVDS RX bit 12 or CMOS I/O	LVDS or 2.5-V	AK23
127	HSMF_TX_n12	LVDS TX bit $12 n$ or CMOS I/O	LVDS or 2.5-V	AE22
128	HSMF_RX_n12	LVDS RX bit $12 n$ or CMOS I/O	LVDS or 2.5-V	AL23
131	HSMF_TX_p13	LVDS TX bit 13 or CMOS I/O	LVDS or 2.5-V	AG21
132	HSMF_RX_p13	LVDS RX bit 13 or CMOS I/O	LVDS or 2.5-V	AH23
133	HSMF_TX_n13	LVDS TX bit $13 n$ or CMOS I/O	LVDS or 2.5-V	AE21
134	HSMF_RX_n13	LVDS RX bit $13 n$ orL	LVDS or 2.5-V	AJ23

		CMOS I/O	
137	HSMF_TX_p14	LVDS TX bit 14 or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AD21
138	HSMF_RX_p14	LVDS RX bit 14 or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AF22
139	HSMF_TX_n14	LVDS TX bit $14 n$ or CMOS I/O LVDS or 2.5-V	AG20
140	HSMF_RX_n14	LVDS RX bit $14 n$ or CMOS I/O LVDS or 2.5-V	AG22
143	HSMF_TX_p15	LVDS TX bit 15 or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AG18
144	HSMF_RX_p15	LVDS RX bit 15 or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AE20
145	HSMF_TX_n15	LVDS TX bit 15 n or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AE18
146	HSMF_RX_n15	LVDS RX bit $15 n$ or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AF20
149	HSMF_TX_p16	LVDS TX bit 16 or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AD19
150	HSMF_RX_p16	LVDS RX bit 16 or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AE19
151	HSMF_TX_n16	LVDS TX bit 16 n or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AG19
152	HSMF_RX_n16	LVDS RX bit 16 n or LVDS or $2.5-\mathrm{V}$ CMOS I/O	AF19
155	HSMF_OUT_p2	LVDS TX or CMOS I/O or differential clockLVDS or 2.5-V input/output	AH2O
156	HSMF_CLKIN_p2	LVDS RX or CMOS I/O or differential clockLVDS or 2.5-V input	AR22
157	HSMF_OUT_n2	LVDS TX or CMOS I/O or differential clockLVDS or 2.5-V input/output	AJ20
158	HSMF_CLKIN_n2	LVDS RX or CMOS I/O or differential clockLVDS or 2.5-V input	AT21

Additional Information

Getting Help

Here is the contact information where you can get help if you encounter problems:

- Terasic Technologies

No. 356, Sec. 1, Fusing E. Rd.
Jhubei City, HsinChu County, Taiwan, 302
Email: support@terasic.com
Web: www.terasic.com

Revision History

Date	Version	Changes
2011.12.29	First publication	

